通过深度复眼网络和姿势修复模块进行人员再识别

IF 1.5 4区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE IET Computer Vision Pub Date : 2024-04-04 DOI:10.1049/cvi2.12282
Hongjian Gu, Wenxuan Zou, Keyang Cheng, Bin Wu, Humaira Abdul Ghafoor, Yongzhao Zhan
{"title":"通过深度复眼网络和姿势修复模块进行人员再识别","authors":"Hongjian Gu,&nbsp;Wenxuan Zou,&nbsp;Keyang Cheng,&nbsp;Bin Wu,&nbsp;Humaira Abdul Ghafoor,&nbsp;Yongzhao Zhan","doi":"10.1049/cvi2.12282","DOIUrl":null,"url":null,"abstract":"<p>Person re-identification is aimed at searching for specific target pedestrians from non-intersecting cameras. However, in real complex scenes, pedestrians are easily obscured, which makes the target pedestrian search task time-consuming and challenging. To address the problem of pedestrians' susceptibility to occlusion, a person re-identification via deep compound eye network (CEN) and pose repair module is proposed, which includes (1) A deep CEN based on multi-camera logical topology is proposed, which adopts graph convolution and a Gated Recurrent Unit to capture the temporal and spatial information of pedestrian walking and finally carries out pedestrian global matching through the Siamese network; (2) An integrated spatial-temporal information aggregation network is designed to facilitate pose repair. The target pedestrian features under the multi-level logic topology camera are utilised as auxiliary information to repair the occluded target pedestrian image, so as to reduce the impact of pedestrian mismatch due to pose changes; (3) A joint optimisation mechanism of CEN and pose repair network is introduced, where multi-camera logical topology inference provides auxiliary information and retrieval order for the pose repair network. The authors conducted experiments on multiple datasets, including Occluded-DukeMTMC, CUHK-SYSU, PRW, SLP, and UJS-reID. The results indicate that the authors’ method achieved significant performance across these datasets. Specifically, on the CUHK-SYSU dataset, the authors’ model achieved a top-1 accuracy of 89.1% and a mean Average Precision accuracy of 83.1% in the recognition of occluded individuals.</p>","PeriodicalId":56304,"journal":{"name":"IET Computer Vision","volume":"18 6","pages":"826-841"},"PeriodicalIF":1.5000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cvi2.12282","citationCount":"0","resultStr":"{\"title\":\"Person re-identification via deep compound eye network and pose repair module\",\"authors\":\"Hongjian Gu,&nbsp;Wenxuan Zou,&nbsp;Keyang Cheng,&nbsp;Bin Wu,&nbsp;Humaira Abdul Ghafoor,&nbsp;Yongzhao Zhan\",\"doi\":\"10.1049/cvi2.12282\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Person re-identification is aimed at searching for specific target pedestrians from non-intersecting cameras. However, in real complex scenes, pedestrians are easily obscured, which makes the target pedestrian search task time-consuming and challenging. To address the problem of pedestrians' susceptibility to occlusion, a person re-identification via deep compound eye network (CEN) and pose repair module is proposed, which includes (1) A deep CEN based on multi-camera logical topology is proposed, which adopts graph convolution and a Gated Recurrent Unit to capture the temporal and spatial information of pedestrian walking and finally carries out pedestrian global matching through the Siamese network; (2) An integrated spatial-temporal information aggregation network is designed to facilitate pose repair. The target pedestrian features under the multi-level logic topology camera are utilised as auxiliary information to repair the occluded target pedestrian image, so as to reduce the impact of pedestrian mismatch due to pose changes; (3) A joint optimisation mechanism of CEN and pose repair network is introduced, where multi-camera logical topology inference provides auxiliary information and retrieval order for the pose repair network. The authors conducted experiments on multiple datasets, including Occluded-DukeMTMC, CUHK-SYSU, PRW, SLP, and UJS-reID. The results indicate that the authors’ method achieved significant performance across these datasets. Specifically, on the CUHK-SYSU dataset, the authors’ model achieved a top-1 accuracy of 89.1% and a mean Average Precision accuracy of 83.1% in the recognition of occluded individuals.</p>\",\"PeriodicalId\":56304,\"journal\":{\"name\":\"IET Computer Vision\",\"volume\":\"18 6\",\"pages\":\"826-841\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cvi2.12282\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Computer Vision\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/cvi2.12282\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cvi2.12282","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

人员再识别的目的是从不相交的摄像机中搜索特定的目标行人。然而,在真实的复杂场景中,行人很容易被遮挡,这使得目标行人搜索任务变得耗时且具有挑战性。针对行人易被遮挡的问题,提出了一种通过深度复眼网络(CEN)和姿态修复模块进行人脸再识别的方法,包括:(1)提出了一种基于多摄像头逻辑拓扑结构的深度复眼网络,采用图卷积和门控递归单元捕捉行人行走的时空信息,最后通过连体网络进行行人全局匹配;(2)设计了一种集成的时空信息聚合网络,以方便姿态修复。利用多级逻辑拓扑相机下的目标行人特征作为辅助信息,修复被遮挡的目标行人图像,从而降低姿势变化导致的行人不匹配影响;(3)引入 CEN 和姿势修复网络的联合优化机制,多相机逻辑拓扑推理为姿势修复网络提供辅助信息和检索顺序。作者在多个数据集上进行了实验,包括 Occluded-DukeMTMC、CUHK-SYSU、PRW、SLP 和 UJS-reID。结果表明,作者的方法在这些数据集上都取得了显著的性能。具体来说,在 CUHK-SYSU 数据集上,作者的模型在识别闭塞个体方面达到了 89.1% 的最高准确率和 83.1% 的平均准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Person re-identification via deep compound eye network and pose repair module

Person re-identification is aimed at searching for specific target pedestrians from non-intersecting cameras. However, in real complex scenes, pedestrians are easily obscured, which makes the target pedestrian search task time-consuming and challenging. To address the problem of pedestrians' susceptibility to occlusion, a person re-identification via deep compound eye network (CEN) and pose repair module is proposed, which includes (1) A deep CEN based on multi-camera logical topology is proposed, which adopts graph convolution and a Gated Recurrent Unit to capture the temporal and spatial information of pedestrian walking and finally carries out pedestrian global matching through the Siamese network; (2) An integrated spatial-temporal information aggregation network is designed to facilitate pose repair. The target pedestrian features under the multi-level logic topology camera are utilised as auxiliary information to repair the occluded target pedestrian image, so as to reduce the impact of pedestrian mismatch due to pose changes; (3) A joint optimisation mechanism of CEN and pose repair network is introduced, where multi-camera logical topology inference provides auxiliary information and retrieval order for the pose repair network. The authors conducted experiments on multiple datasets, including Occluded-DukeMTMC, CUHK-SYSU, PRW, SLP, and UJS-reID. The results indicate that the authors’ method achieved significant performance across these datasets. Specifically, on the CUHK-SYSU dataset, the authors’ model achieved a top-1 accuracy of 89.1% and a mean Average Precision accuracy of 83.1% in the recognition of occluded individuals.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Computer Vision
IET Computer Vision 工程技术-工程:电子与电气
CiteScore
3.30
自引率
11.80%
发文量
76
审稿时长
3.4 months
期刊介绍: IET Computer Vision seeks original research papers in a wide range of areas of computer vision. The vision of the journal is to publish the highest quality research work that is relevant and topical to the field, but not forgetting those works that aim to introduce new horizons and set the agenda for future avenues of research in computer vision. IET Computer Vision welcomes submissions on the following topics: Biologically and perceptually motivated approaches to low level vision (feature detection, etc.); Perceptual grouping and organisation Representation, analysis and matching of 2D and 3D shape Shape-from-X Object recognition Image understanding Learning with visual inputs Motion analysis and object tracking Multiview scene analysis Cognitive approaches in low, mid and high level vision Control in visual systems Colour, reflectance and light Statistical and probabilistic models Face and gesture Surveillance Biometrics and security Robotics Vehicle guidance Automatic model aquisition Medical image analysis and understanding Aerial scene analysis and remote sensing Deep learning models in computer vision Both methodological and applications orientated papers are welcome. Manuscripts submitted are expected to include a detailed and analytical review of the literature and state-of-the-art exposition of the original proposed research and its methodology, its thorough experimental evaluation, and last but not least, comparative evaluation against relevant and state-of-the-art methods. Submissions not abiding by these minimum requirements may be returned to authors without being sent to review. Special Issues Current Call for Papers: Computer Vision for Smart Cameras and Camera Networks - https://digital-library.theiet.org/files/IET_CVI_SC.pdf Computer Vision for the Creative Industries - https://digital-library.theiet.org/files/IET_CVI_CVCI.pdf
期刊最新文献
SRL-ProtoNet: Self-supervised representation learning for few-shot remote sensing scene classification Balanced parametric body prior for implicit clothed human reconstruction from a monocular RGB Social-ATPGNN: Prediction of multi-modal pedestrian trajectory of non-homogeneous social interaction HIST: Hierarchical and sequential transformer for image captioning Multi-modal video search by examples—A video quality impact analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1