动态扰动下锚的机械响应特性研究

IF 1.2 4区 工程技术 Q3 MINING & MINERAL PROCESSING Archives of Mining Sciences Pub Date : 2024-04-04 DOI:10.24425/ams.2024.149833
Zhiqiang Yin, Chao Wang, Zhiyu Chen, Youxun Cao, Tao Yang, Deren Chen, Dengke Wang
{"title":"动态扰动下锚的机械响应特性研究","authors":"Zhiqiang Yin, Chao Wang, Zhiyu Chen, Youxun Cao, Tao Yang, Deren Chen, Dengke Wang","doi":"10.24425/ams.2024.149833","DOIUrl":null,"url":null,"abstract":"The roadway surrounding rock is often subjected to severe damage under dynamic loading at greater mining depths. To study the dynamic response of prestressed anchors, the damage characteristics of anchor solids with different prestresses and number of impacts under dynamic and static loads were investigated by improving the Hopkinson bar equipment. The effect of prestress on stress wave transmission was obtained, and the laws and reasons for axial force loss under static and dynamic loads were analyzed. The damage characteristics of anchor solids were determined experimentally. The results show that with an increase in prestress from 15 to 30 MPa, the peak value of the stress wave gradually increases and the decay rate gradually decreases. Shear damage occurred at the impact end of the specimen, combined tension and shear damage occurred at the free end, and fracture occurred in the middle. With an increase in the number of impacts, the damage to the anchor solid specimens gradually increased, and the prestressing force gradually decreased. After impact, the axial force of the various prestressed anchor solid specimens gradually increased; however, the anchor bar with a 17 MPa prestressing force had the slowest rate of axial force loss during impact, withstanding a greater number of impacts. In on-site applications, after three explosions, the displacement on both sides of the tunnel supported by 17 MPa prestressed anchor rods could be controlled within 0.3 m, with an average displacement of 206, 240, and 283 mm, respectively, increasing by 16.5% and 17.9%. This study, based on theoretical analysis and laboratory research combined with field application provides guidance for the anchor support of a dynamic loading tunnel.","PeriodicalId":55468,"journal":{"name":"Archives of Mining Sciences","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on Mechanical Response Characteristics of Anchor under Dynamic Disturbance\",\"authors\":\"Zhiqiang Yin, Chao Wang, Zhiyu Chen, Youxun Cao, Tao Yang, Deren Chen, Dengke Wang\",\"doi\":\"10.24425/ams.2024.149833\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The roadway surrounding rock is often subjected to severe damage under dynamic loading at greater mining depths. To study the dynamic response of prestressed anchors, the damage characteristics of anchor solids with different prestresses and number of impacts under dynamic and static loads were investigated by improving the Hopkinson bar equipment. The effect of prestress on stress wave transmission was obtained, and the laws and reasons for axial force loss under static and dynamic loads were analyzed. The damage characteristics of anchor solids were determined experimentally. The results show that with an increase in prestress from 15 to 30 MPa, the peak value of the stress wave gradually increases and the decay rate gradually decreases. Shear damage occurred at the impact end of the specimen, combined tension and shear damage occurred at the free end, and fracture occurred in the middle. With an increase in the number of impacts, the damage to the anchor solid specimens gradually increased, and the prestressing force gradually decreased. After impact, the axial force of the various prestressed anchor solid specimens gradually increased; however, the anchor bar with a 17 MPa prestressing force had the slowest rate of axial force loss during impact, withstanding a greater number of impacts. In on-site applications, after three explosions, the displacement on both sides of the tunnel supported by 17 MPa prestressed anchor rods could be controlled within 0.3 m, with an average displacement of 206, 240, and 283 mm, respectively, increasing by 16.5% and 17.9%. This study, based on theoretical analysis and laboratory research combined with field application provides guidance for the anchor support of a dynamic loading tunnel.\",\"PeriodicalId\":55468,\"journal\":{\"name\":\"Archives of Mining Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Mining Sciences\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.24425/ams.2024.149833\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MINING & MINERAL PROCESSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Mining Sciences","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.24425/ams.2024.149833","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MINING & MINERAL PROCESSING","Score":null,"Total":0}
引用次数: 0

摘要

在开采深度较大的情况下,巷道围岩在动荷载作用下往往会受到严重破坏。为了研究预应力锚杆的动态响应,通过改进霍普金森棒设备,研究了不同预应力和冲击次数的锚杆固体在动静载荷作用下的破坏特征。获得了预应力对应力波传递的影响,分析了静载和动载下轴向力损失的规律和原因。通过实验确定了锚固体的破坏特征。结果表明,随着预应力从 15 兆帕增加到 30 兆帕,应力波的峰值逐渐增大,衰减率逐渐减小。试样的冲击端发生剪切破坏,自由端发生拉伸和剪切联合破坏,中间发生断裂。随着撞击次数的增加,锚固试样的破坏逐渐加剧,预应力逐渐减小。冲击后,各种预应力锚固试样的轴向力逐渐增大;然而,预应力为 17 兆帕的锚杆在冲击过程中轴向力损失速度最慢,可承受的冲击次数更多。在现场应用中,经过三次爆炸后,17 兆帕预应力锚杆支护的隧道两侧位移可控制在 0.3 米以内,平均位移分别为 206、240 和 283 毫米,分别增加了 16.5%和 17.9%。这项研究以理论分析和实验室研究为基础,结合实地应用,为动荷载隧道的锚杆支护提供了指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Study on Mechanical Response Characteristics of Anchor under Dynamic Disturbance
The roadway surrounding rock is often subjected to severe damage under dynamic loading at greater mining depths. To study the dynamic response of prestressed anchors, the damage characteristics of anchor solids with different prestresses and number of impacts under dynamic and static loads were investigated by improving the Hopkinson bar equipment. The effect of prestress on stress wave transmission was obtained, and the laws and reasons for axial force loss under static and dynamic loads were analyzed. The damage characteristics of anchor solids were determined experimentally. The results show that with an increase in prestress from 15 to 30 MPa, the peak value of the stress wave gradually increases and the decay rate gradually decreases. Shear damage occurred at the impact end of the specimen, combined tension and shear damage occurred at the free end, and fracture occurred in the middle. With an increase in the number of impacts, the damage to the anchor solid specimens gradually increased, and the prestressing force gradually decreased. After impact, the axial force of the various prestressed anchor solid specimens gradually increased; however, the anchor bar with a 17 MPa prestressing force had the slowest rate of axial force loss during impact, withstanding a greater number of impacts. In on-site applications, after three explosions, the displacement on both sides of the tunnel supported by 17 MPa prestressed anchor rods could be controlled within 0.3 m, with an average displacement of 206, 240, and 283 mm, respectively, increasing by 16.5% and 17.9%. This study, based on theoretical analysis and laboratory research combined with field application provides guidance for the anchor support of a dynamic loading tunnel.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archives of Mining Sciences
Archives of Mining Sciences 工程技术-矿业与矿物加工
CiteScore
2.40
自引率
16.70%
发文量
0
审稿时长
20 months
期刊介绍: Archives of Mining Sciences (AMS) is concerned with original research, new developments and case studies in mining sciences and energy, civil engineering and environmental engineering. The journal provides an international forum for the publication of high quality research results in: mining technologies, mineral processing, stability of mine workings, mining machine science, ventilation systems, rock mechanics, termodynamics, underground storage of oil and gas, mining and engineering geology, geotechnical engineering, tunnelling, design and construction of tunnels, design and construction on mining areas, mining geodesy, environmental protection in mining, revitalisation of postindustrial areas. Papers are welcomed on all relevant topics and especially on theoretical developments, analytical methods, numerical methods, rock testing, site investigation, and case studies.
期刊最新文献
The Influence of Geotechnical, Geological and Mining Factors on the Formation of Sinkholes at Lubambe Mine, Zambia The Influence of Rope Guide Sleeve Clearance on the Lateral Oscillation of Rope Guided Conveyance in Mine Hoist System caused by the Aerodynamic Force Injection Micropile Bar Fatigue Resistance at Loads Lower and Greater than the Yield Strength of Steel Strength and Crack Propagation Analysis of Layered Backfill Based on Energy Theory Analysis of Factors Influencing Carbon Footprint Reduction in Construction Projects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1