Cristian Mauricio Barreto Pinilla, Wellington da Silva Oliveira, Aline de Oliveira Garcia, L. M. Spadoti, B. Redruello, B. del Rio, Miguel A Alvarez, A. T. Silva e Alves
{"title":"巴西本地的非启动乳酸菌提高了短期奶酪中挥发性化合物的多样性。","authors":"Cristian Mauricio Barreto Pinilla, Wellington da Silva Oliveira, Aline de Oliveira Garcia, L. M. Spadoti, B. Redruello, B. del Rio, Miguel A Alvarez, A. T. Silva e Alves","doi":"10.1093/lambio/ovae036","DOIUrl":null,"url":null,"abstract":"There is growing interest in using autochthonous lactic acid bacteria (LAB) that provide unique sensory characteristics to dairy products without affecting their safety and quality. This work studied the capacity of three Brazilian indigenous non-starter LABs (NSLAB) to produce biogenic amines (BAs) and evaluated their effect on the volatile organic compounds (VOCs), microbial LAB communities, and physicochemical profile of short-aged cheese. Initially, the strain's potential for biosynthesis of BAs was assessed by PCR and in vitro assays. Then, a pilot-scale cheese was produced, including the NSLAB, and the microbial and VOC profiles were analyzed after 25 and 45 days of ripening. As results, the strains did not present genes related to relevant BAs and did not produce them in vitro. During cheese ripening, the Lactococci counts were reduced, probably in the production of alcohols and acid compounds by the NSLAB. Each strain produces a unique VOC profile that changes over the ripening time without the main VOCs related to rancid or old cheese. Particularly, the use of the strain Lacticaseibacillus. paracasei ItalPN16 resulted in production of ester compounds with fruity notes. Thus, indigenous NSLAB could be a valuable tool for the enhancement and diversification of flavor in short-aged cheese.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Brazilian indigenous Non-Starter Lactic acid Bacteria enhance the diversification of volatile compounds in short-aged cheese.\",\"authors\":\"Cristian Mauricio Barreto Pinilla, Wellington da Silva Oliveira, Aline de Oliveira Garcia, L. M. Spadoti, B. Redruello, B. del Rio, Miguel A Alvarez, A. T. Silva e Alves\",\"doi\":\"10.1093/lambio/ovae036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There is growing interest in using autochthonous lactic acid bacteria (LAB) that provide unique sensory characteristics to dairy products without affecting their safety and quality. This work studied the capacity of three Brazilian indigenous non-starter LABs (NSLAB) to produce biogenic amines (BAs) and evaluated their effect on the volatile organic compounds (VOCs), microbial LAB communities, and physicochemical profile of short-aged cheese. Initially, the strain's potential for biosynthesis of BAs was assessed by PCR and in vitro assays. Then, a pilot-scale cheese was produced, including the NSLAB, and the microbial and VOC profiles were analyzed after 25 and 45 days of ripening. As results, the strains did not present genes related to relevant BAs and did not produce them in vitro. During cheese ripening, the Lactococci counts were reduced, probably in the production of alcohols and acid compounds by the NSLAB. Each strain produces a unique VOC profile that changes over the ripening time without the main VOCs related to rancid or old cheese. Particularly, the use of the strain Lacticaseibacillus. paracasei ItalPN16 resulted in production of ester compounds with fruity notes. Thus, indigenous NSLAB could be a valuable tool for the enhancement and diversification of flavor in short-aged cheese.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/lambio/ovae036\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/lambio/ovae036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Brazilian indigenous Non-Starter Lactic acid Bacteria enhance the diversification of volatile compounds in short-aged cheese.
There is growing interest in using autochthonous lactic acid bacteria (LAB) that provide unique sensory characteristics to dairy products without affecting their safety and quality. This work studied the capacity of three Brazilian indigenous non-starter LABs (NSLAB) to produce biogenic amines (BAs) and evaluated their effect on the volatile organic compounds (VOCs), microbial LAB communities, and physicochemical profile of short-aged cheese. Initially, the strain's potential for biosynthesis of BAs was assessed by PCR and in vitro assays. Then, a pilot-scale cheese was produced, including the NSLAB, and the microbial and VOC profiles were analyzed after 25 and 45 days of ripening. As results, the strains did not present genes related to relevant BAs and did not produce them in vitro. During cheese ripening, the Lactococci counts were reduced, probably in the production of alcohols and acid compounds by the NSLAB. Each strain produces a unique VOC profile that changes over the ripening time without the main VOCs related to rancid or old cheese. Particularly, the use of the strain Lacticaseibacillus. paracasei ItalPN16 resulted in production of ester compounds with fruity notes. Thus, indigenous NSLAB could be a valuable tool for the enhancement and diversification of flavor in short-aged cheese.