发酵饮料中生物活性羟基酪醇的生产:葡萄汁成分和转基因酵母菌株的作用

Marina Gonzalez-Ramirez, M. Gallardo-Fernández, A. Cerezo, Ricardo Bisquert, Eva Valero, A. Troncoso, M. C. García-Parrilla
{"title":"发酵饮料中生物活性羟基酪醇的生产:葡萄汁成分和转基因酵母菌株的作用","authors":"Marina Gonzalez-Ramirez, M. Gallardo-Fernández, A. Cerezo, Ricardo Bisquert, Eva Valero, A. Troncoso, M. C. García-Parrilla","doi":"10.3390/fermentation10040198","DOIUrl":null,"url":null,"abstract":"Hydroxytyrosol (HT) is a well-known compound for its bioactive properties. It is naturally present in olives, olive oil, and wine. Its presence in wines is partly due to its production during alcoholic fermentation by yeast through a hydroxylation of tyrosol formed through the Ehrlich pathway. This work aims to explore the influence of yeast assimilable nitrogen (YAN) and glucose content as precursors of HT formation during alcoholic fermentation. Commercial Saccharomyces cerevisiae QA23 and its metabolically engineered strain were used to ferment synthetic must. Each strain was tested at two different YAN concentrations (210 and 300 mg L−1) and two glucose concentrations (100 and 240 g L−1). This work confirms that the less YAN and the more glucose, the higher the HT content, with fermentations carried out with the metabolically engineered strain being the ones with the highest HT content (0.6 mg L−1).","PeriodicalId":507249,"journal":{"name":"Fermentation","volume":"16 s1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Production of Bioactive Hydroxytyrosol in Fermented Beverages: The Role of Must Composition and a Genetically Modified Yeast Strain\",\"authors\":\"Marina Gonzalez-Ramirez, M. Gallardo-Fernández, A. Cerezo, Ricardo Bisquert, Eva Valero, A. Troncoso, M. C. García-Parrilla\",\"doi\":\"10.3390/fermentation10040198\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hydroxytyrosol (HT) is a well-known compound for its bioactive properties. It is naturally present in olives, olive oil, and wine. Its presence in wines is partly due to its production during alcoholic fermentation by yeast through a hydroxylation of tyrosol formed through the Ehrlich pathway. This work aims to explore the influence of yeast assimilable nitrogen (YAN) and glucose content as precursors of HT formation during alcoholic fermentation. Commercial Saccharomyces cerevisiae QA23 and its metabolically engineered strain were used to ferment synthetic must. Each strain was tested at two different YAN concentrations (210 and 300 mg L−1) and two glucose concentrations (100 and 240 g L−1). This work confirms that the less YAN and the more glucose, the higher the HT content, with fermentations carried out with the metabolically engineered strain being the ones with the highest HT content (0.6 mg L−1).\",\"PeriodicalId\":507249,\"journal\":{\"name\":\"Fermentation\",\"volume\":\"16 s1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fermentation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/fermentation10040198\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fermentation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fermentation10040198","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

羟基酪醇(HT)是一种具有生物活性的著名化合物。它天然存在于橄榄、橄榄油和葡萄酒中。葡萄酒中含有羟基酪醇的部分原因是酵母在酒精发酵过程中通过艾氏途径对酪醇进行羟基化作用而产生的。这项工作旨在探索酒精发酵过程中作为 HT 形成前体的酵母同化氮(YAN)和葡萄糖含量的影响。使用商业酵母 QA23 及其代谢工程菌株发酵合成葡萄汁。在两种不同的 YAN 浓度(210 毫克/升和 300 毫克/升)和两种葡萄糖浓度(100 克/升和 240 克/升)下对每种菌株进行了测试。这项工作证实,YAN 越少、葡萄糖越多,HT 含量越高,使用代谢工程菌株进行的发酵中 HT 含量最高(0.6 mg L-1)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Production of Bioactive Hydroxytyrosol in Fermented Beverages: The Role of Must Composition and a Genetically Modified Yeast Strain
Hydroxytyrosol (HT) is a well-known compound for its bioactive properties. It is naturally present in olives, olive oil, and wine. Its presence in wines is partly due to its production during alcoholic fermentation by yeast through a hydroxylation of tyrosol formed through the Ehrlich pathway. This work aims to explore the influence of yeast assimilable nitrogen (YAN) and glucose content as precursors of HT formation during alcoholic fermentation. Commercial Saccharomyces cerevisiae QA23 and its metabolically engineered strain were used to ferment synthetic must. Each strain was tested at two different YAN concentrations (210 and 300 mg L−1) and two glucose concentrations (100 and 240 g L−1). This work confirms that the less YAN and the more glucose, the higher the HT content, with fermentations carried out with the metabolically engineered strain being the ones with the highest HT content (0.6 mg L−1).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Harnessing Fermentation by Bacillus and Lactic Acid Bacteria for Enhanced Texture, Flavor, and Nutritional Value in Plant-Based Matrices Characterization of the Key Aroma Compounds of Soybean Flavor in Fermented Soybeans with Bacillus subtilis BJ3-2 by Gene Knockout, Gas Chromatography–Olfactometry–Mass Spectrometry, and Aroma Addition Experiments Development of Volatile Fatty Acid and Methane Production Prediction Model Using Ruminant Nutrition Comparison of Algorithms Solid-State Fermentation of Quinoa Flour: An In-Depth Analysis of Ingredient Characteristics Bioactive Peptides Derived from Whey Proteins for Health and Functional Beverages
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1