边缘计算中人工智能/移动语言应用的动态资源分配:框架结构与优化方法

Md.mafiqul Islam
{"title":"边缘计算中人工智能/移动语言应用的动态资源分配:框架结构与优化方法","authors":"Md.mafiqul Islam","doi":"10.60087/jaigs.vol03.issue01.p65","DOIUrl":null,"url":null,"abstract":"This scholarly paper introduces an extensive architectural framework and optimization strategies designed specifically for dynamic resource allocation in edge computing environments, with a focus on AI/ML applications. The rise of edge computing presents a viable solution for managing the computational complexities of AI/ML tasks by utilizing resources in proximity to data sources. Nevertheless, effective resource allocation encounters significant hurdles due to the diverse and ever-changing nature of edge environments. In addressing these challenges, the paper introduces an innovative framework that integrates dynamic resource allocation methodologies with the unique requirements of AI/ML applications. This framework encompasses a range of optimization techniques customized to efficiently distribute resources, taking into account factors such as workload attributes, resource availability, and latency limitations. Through extensive simulations and evaluations, the study showcases the effectiveness of the proposed approach in enhancing resource utilization, reducing latency, and bolstering overall performance for AI/ML workloads within edge computing scenarios.","PeriodicalId":517201,"journal":{"name":"Journal of Artificial Intelligence General science (JAIGS) ISSN:3006-4023","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic Resource Allocation for AI/ML Applications in Edge Computing: Framework Architecture and Optimization Methods\",\"authors\":\"Md.mafiqul Islam\",\"doi\":\"10.60087/jaigs.vol03.issue01.p65\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This scholarly paper introduces an extensive architectural framework and optimization strategies designed specifically for dynamic resource allocation in edge computing environments, with a focus on AI/ML applications. The rise of edge computing presents a viable solution for managing the computational complexities of AI/ML tasks by utilizing resources in proximity to data sources. Nevertheless, effective resource allocation encounters significant hurdles due to the diverse and ever-changing nature of edge environments. In addressing these challenges, the paper introduces an innovative framework that integrates dynamic resource allocation methodologies with the unique requirements of AI/ML applications. This framework encompasses a range of optimization techniques customized to efficiently distribute resources, taking into account factors such as workload attributes, resource availability, and latency limitations. Through extensive simulations and evaluations, the study showcases the effectiveness of the proposed approach in enhancing resource utilization, reducing latency, and bolstering overall performance for AI/ML workloads within edge computing scenarios.\",\"PeriodicalId\":517201,\"journal\":{\"name\":\"Journal of Artificial Intelligence General science (JAIGS) ISSN:3006-4023\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Artificial Intelligence General science (JAIGS) ISSN:3006-4023\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.60087/jaigs.vol03.issue01.p65\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Artificial Intelligence General science (JAIGS) ISSN:3006-4023","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.60087/jaigs.vol03.issue01.p65","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这篇学术论文介绍了专为边缘计算环境中的动态资源分配而设计的广泛架构框架和优化策略,重点关注人工智能/ML 应用。边缘计算的兴起为利用靠近数据源的资源来管理人工智能/ML 任务的计算复杂性提供了可行的解决方案。然而,由于边缘环境的多样性和不断变化的性质,有效的资源分配遇到了重大障碍。为应对这些挑战,本文介绍了一个创新框架,该框架将动态资源分配方法与人工智能/移动计算应用的独特要求相结合。该框架包含一系列优化技术,可在考虑工作负载属性、资源可用性和延迟限制等因素的情况下,定制用于有效分配资源的技术。通过广泛的模拟和评估,该研究展示了所提出的方法在提高资源利用率、减少延迟和增强边缘计算场景中人工智能/ML 工作负载的整体性能方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dynamic Resource Allocation for AI/ML Applications in Edge Computing: Framework Architecture and Optimization Methods
This scholarly paper introduces an extensive architectural framework and optimization strategies designed specifically for dynamic resource allocation in edge computing environments, with a focus on AI/ML applications. The rise of edge computing presents a viable solution for managing the computational complexities of AI/ML tasks by utilizing resources in proximity to data sources. Nevertheless, effective resource allocation encounters significant hurdles due to the diverse and ever-changing nature of edge environments. In addressing these challenges, the paper introduces an innovative framework that integrates dynamic resource allocation methodologies with the unique requirements of AI/ML applications. This framework encompasses a range of optimization techniques customized to efficiently distribute resources, taking into account factors such as workload attributes, resource availability, and latency limitations. Through extensive simulations and evaluations, the study showcases the effectiveness of the proposed approach in enhancing resource utilization, reducing latency, and bolstering overall performance for AI/ML workloads within edge computing scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
LLM-Cloud Complete: Leveraging Cloud Computing for Efficient Large Language Model-based Code Completion Utilizing the Internet of Things (IoT), Artificial Intelligence, Machine Learning, and Vehicle Telematics for Sustainable Growth in Small and Medium Firms (SMEs) Role of Artificial Intelligence and Big Data in Sustainable Entrepreneurship Impact of AI on Education: Innovative Tools and Trends Critique of Modern Feminism
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1