过度精英化对使用 NEAT 的人造生物进化的影响

IF 0.8 Q4 ROBOTICS Artificial Life and Robotics Pub Date : 2024-04-03 DOI:10.1007/s10015-024-00948-5
Siti Aisyah Binti Jaafar, Reiji Suzuki, Satoru Komori, Takaya Arita
{"title":"过度精英化对使用 NEAT 的人造生物进化的影响","authors":"Siti Aisyah Binti Jaafar,&nbsp;Reiji Suzuki,&nbsp;Satoru Komori,&nbsp;Takaya Arita","doi":"10.1007/s10015-024-00948-5","DOIUrl":null,"url":null,"abstract":"<div><p>This paper proposes a simple method based on a novel use of elitism to increase the population size of artificial creatures while minimizing evaluation cost. This can contribute to preventing premature convergence of the population. We propose the “Excessive Elitism (EE)” method by modifying elitism in HyperNEAT (Hypercube-based NeuroEvolution of Augmenting Topologies), which is an evolutionary algorithm commonly used to evolve genotype [i.e., Compositional Pattern Producing Network (CPPN)] of artificial creatures. In EE, the evaluated fitness of best-fit individuals will be succeeded and reused instead of being re-evaluated during subsequent fitness evaluations, thereby reducing the evaluation cost if the elite size is excessive. Notably, EE also disables speciation and fitness sharing, serving to simplify the population structure and reduce complexity. In a 3D multi-agent environment, we evolved the morphology and behavior of artificial creatures with a simple target approach task. We assumed a baseline case (EE (2, 20)) in which a small population size was used due to the strong limitation of the evaluation cost and adopted a normal small elite size. This often led to premature convergence of the population to suboptimal individuals who could not reach the target. However, with the application of EE, the population was capable of evolving to reach the target, maintaining an evaluation cost comparable to EE (2, 20). We demonstrate that EE method serves as a simpler alternative to speciation for diversity preservation, capable of enhancing both the average and optimal fitness of a population, thus preventing premature convergence at a minimal evaluation cost. Further research in complex environments is required to fully uncover the potential and limitations of this method.</p></div>","PeriodicalId":46050,"journal":{"name":"Artificial Life and Robotics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of excessive elitism on the evolution of artificial creatures with NEAT\",\"authors\":\"Siti Aisyah Binti Jaafar,&nbsp;Reiji Suzuki,&nbsp;Satoru Komori,&nbsp;Takaya Arita\",\"doi\":\"10.1007/s10015-024-00948-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper proposes a simple method based on a novel use of elitism to increase the population size of artificial creatures while minimizing evaluation cost. This can contribute to preventing premature convergence of the population. We propose the “Excessive Elitism (EE)” method by modifying elitism in HyperNEAT (Hypercube-based NeuroEvolution of Augmenting Topologies), which is an evolutionary algorithm commonly used to evolve genotype [i.e., Compositional Pattern Producing Network (CPPN)] of artificial creatures. In EE, the evaluated fitness of best-fit individuals will be succeeded and reused instead of being re-evaluated during subsequent fitness evaluations, thereby reducing the evaluation cost if the elite size is excessive. Notably, EE also disables speciation and fitness sharing, serving to simplify the population structure and reduce complexity. In a 3D multi-agent environment, we evolved the morphology and behavior of artificial creatures with a simple target approach task. We assumed a baseline case (EE (2, 20)) in which a small population size was used due to the strong limitation of the evaluation cost and adopted a normal small elite size. This often led to premature convergence of the population to suboptimal individuals who could not reach the target. However, with the application of EE, the population was capable of evolving to reach the target, maintaining an evaluation cost comparable to EE (2, 20). We demonstrate that EE method serves as a simpler alternative to speciation for diversity preservation, capable of enhancing both the average and optimal fitness of a population, thus preventing premature convergence at a minimal evaluation cost. Further research in complex environments is required to fully uncover the potential and limitations of this method.</p></div>\",\"PeriodicalId\":46050,\"journal\":{\"name\":\"Artificial Life and Robotics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Life and Robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10015-024-00948-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Life and Robotics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s10015-024-00948-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于新颖的精英主义的简单方法,以增加人工生物的种群数量,同时最大限度地降低评估成本。这有助于防止种群过早收敛。我们通过修改 HyperNEAT(基于超立方体的增强拓扑神经进化算法)中的精英主义,提出了 "过度精英主义(EE)"方法,HyperNEAT 是一种进化算法,常用于进化人工生物的基因型[即组合模式生成网络(CPPN)]。在 EE 中,最合适个体的适配度评估结果将被继承和重用,而不是在后续适配度评估过程中重新评估,从而在精英规模过大时降低评估成本。值得注意的是,EE 还禁止了物种分化和适应度共享,从而简化了种群结构并降低了复杂性。在三维多代理环境中,我们通过一个简单的目标接近任务来进化人工生物的形态和行为。我们假设了一种基线情况(EE (2, 20)),在这种情况下,由于评估成本的强烈限制,我们使用了较小的种群规模,并采用了正常的小精英规模。这往往会导致群体过早趋同于无法达到目标的次优个体。然而,应用 EE 后,种群能够不断进化以达到目标,并保持与 EE 相当的评估成本(2, 20)。我们证明,EE 方法是物种多样性保护的一种更简单的替代方法,它能够提高种群的平均和最佳适应性,从而以最小的评估成本防止过早趋同。要充分发掘这种方法的潜力和局限性,还需要在复杂环境中开展进一步研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effects of excessive elitism on the evolution of artificial creatures with NEAT

This paper proposes a simple method based on a novel use of elitism to increase the population size of artificial creatures while minimizing evaluation cost. This can contribute to preventing premature convergence of the population. We propose the “Excessive Elitism (EE)” method by modifying elitism in HyperNEAT (Hypercube-based NeuroEvolution of Augmenting Topologies), which is an evolutionary algorithm commonly used to evolve genotype [i.e., Compositional Pattern Producing Network (CPPN)] of artificial creatures. In EE, the evaluated fitness of best-fit individuals will be succeeded and reused instead of being re-evaluated during subsequent fitness evaluations, thereby reducing the evaluation cost if the elite size is excessive. Notably, EE also disables speciation and fitness sharing, serving to simplify the population structure and reduce complexity. In a 3D multi-agent environment, we evolved the morphology and behavior of artificial creatures with a simple target approach task. We assumed a baseline case (EE (2, 20)) in which a small population size was used due to the strong limitation of the evaluation cost and adopted a normal small elite size. This often led to premature convergence of the population to suboptimal individuals who could not reach the target. However, with the application of EE, the population was capable of evolving to reach the target, maintaining an evaluation cost comparable to EE (2, 20). We demonstrate that EE method serves as a simpler alternative to speciation for diversity preservation, capable of enhancing both the average and optimal fitness of a population, thus preventing premature convergence at a minimal evaluation cost. Further research in complex environments is required to fully uncover the potential and limitations of this method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
22.20%
发文量
101
期刊介绍: Artificial Life and Robotics is an international journal publishing original technical papers and authoritative state-of-the-art reviews on the development of new technologies concerning artificial life and robotics, especially computer-based simulation and hardware for the twenty-first century. This journal covers a broad multidisciplinary field, including areas such as artificial brain research, artificial intelligence, artificial life, artificial living, artificial mind research, brain science, chaos, cognitive science, complexity, computer graphics, evolutionary computations, fuzzy control, genetic algorithms, innovative computations, intelligent control and modelling, micromachines, micro-robot world cup soccer tournament, mobile vehicles, neural networks, neurocomputers, neurocomputing technologies and applications, robotics, robus virtual engineering, and virtual reality. Hardware-oriented submissions are particularly welcome. Publishing body: International Symposium on Artificial Life and RoboticsEditor-in-Chiei: Hiroshi Tanaka Hatanaka R Apartment 101, Hatanaka 8-7A, Ooaza-Hatanaka, Oita city, Oita, Japan 870-0856 ©International Symposium on Artificial Life and Robotics
期刊最新文献
AI robots pioneer the Smarter Inclusive Society Research on coordinated control strategy of distributed static synchronous series compensator based on multi-objective optimization immune algorithm Probabilistic model for high-level intention estimation and trajectory prediction in urban environments Preservation of emotional context in tweet embeddings on social networking sites Spiking neural networks-based generation of caterpillar-like soft robot crawling motions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1