二硼化钛陶瓷发展综述

Xinran Lv, Ziqiang Yin, Zhigang Yang, Junshuai Chen, Shen Zhang, Shaolei Song, Gang Yu
{"title":"二硼化钛陶瓷发展综述","authors":"Xinran Lv, Ziqiang Yin, Zhigang Yang, Junshuai Chen, Shen Zhang, Shaolei Song, Gang Yu","doi":"10.21926/rpm.2402009","DOIUrl":null,"url":null,"abstract":"Titanium diboride (TiB2) materials have garnered significant attention due to their remarkable comprehensive properties. They offer potential applications in high-temperature structural materials, cutting tools, armor, electrodes for metal smelting, and wear-resistant parts. However, due to the low self-diffusion coefficient, the TiB2 exhibits poor sinterability, excessive grain growth at elevated temperatures, and inadequate oxidation resistance, limiting its wide application. Therefore, many research works are devoted to processing TiB2 at a lower sintering temperature and improving the properties through various sintering additives and more advanced techniques. This article comprehensively reviews the multiple synthesis methods and sintering technologies of TiB2, and at the same time, critically discusses the impacts of sintering additives and reinforcing agents on densification, microstructure, and various properties, including those at high temperatures, and finally predicts the future development of TiB2 composite materials.","PeriodicalId":87352,"journal":{"name":"Recent progress in materials","volume":"93 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Review on the Development of Titanium Diboride Ceramics\",\"authors\":\"Xinran Lv, Ziqiang Yin, Zhigang Yang, Junshuai Chen, Shen Zhang, Shaolei Song, Gang Yu\",\"doi\":\"10.21926/rpm.2402009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Titanium diboride (TiB2) materials have garnered significant attention due to their remarkable comprehensive properties. They offer potential applications in high-temperature structural materials, cutting tools, armor, electrodes for metal smelting, and wear-resistant parts. However, due to the low self-diffusion coefficient, the TiB2 exhibits poor sinterability, excessive grain growth at elevated temperatures, and inadequate oxidation resistance, limiting its wide application. Therefore, many research works are devoted to processing TiB2 at a lower sintering temperature and improving the properties through various sintering additives and more advanced techniques. This article comprehensively reviews the multiple synthesis methods and sintering technologies of TiB2, and at the same time, critically discusses the impacts of sintering additives and reinforcing agents on densification, microstructure, and various properties, including those at high temperatures, and finally predicts the future development of TiB2 composite materials.\",\"PeriodicalId\":87352,\"journal\":{\"name\":\"Recent progress in materials\",\"volume\":\"93 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Recent progress in materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21926/rpm.2402009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent progress in materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21926/rpm.2402009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

二硼化钛(TiB2)材料因其显著的综合性能而备受关注。它们在高温结构材料、切削工具、装甲、金属冶炼电极和耐磨部件方面具有潜在的应用价值。然而,由于自扩散系数较低,TiB2 的烧结性较差,在高温下晶粒过度生长,抗氧化性不足,限制了其广泛应用。因此,许多研究工作致力于在较低的烧结温度下加工 TiB2,并通过各种烧结添加剂和更先进的技术改善其性能。本文全面回顾了 TiB2 的多种合成方法和烧结技术,同时批判性地讨论了烧结添加剂和增强剂对致密化、微观结构和各种性能(包括高温性能)的影响,最后预测了 TiB2 复合材料的未来发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Review on the Development of Titanium Diboride Ceramics
Titanium diboride (TiB2) materials have garnered significant attention due to their remarkable comprehensive properties. They offer potential applications in high-temperature structural materials, cutting tools, armor, electrodes for metal smelting, and wear-resistant parts. However, due to the low self-diffusion coefficient, the TiB2 exhibits poor sinterability, excessive grain growth at elevated temperatures, and inadequate oxidation resistance, limiting its wide application. Therefore, many research works are devoted to processing TiB2 at a lower sintering temperature and improving the properties through various sintering additives and more advanced techniques. This article comprehensively reviews the multiple synthesis methods and sintering technologies of TiB2, and at the same time, critically discusses the impacts of sintering additives and reinforcing agents on densification, microstructure, and various properties, including those at high temperatures, and finally predicts the future development of TiB2 composite materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sustainable Concrete with Zero Carbon Footprint Construction and Evaluation of a Modular Anthropomorphic Phantom of the Skull with an Exchangeable Specimen Jar to Optimize the Radiological Examination of Temporal Bone Pathology Impact of Pernicious Chemicals on Geopolymer and Alkali-Activated Composites Incorporated with Different Fiber Types: A Review Spark Plasma Sintering of Cu-Ti-Ni Ternary Alloy: Microstructural, Thermal and Electrical Properties Spin Entanglement – A Unifying Principle for Superconductors and Molecular Bonding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1