{"title":"利用隐式静态 FE 求解器计算纤维增强塑料中不稳定损伤传播的数值方法","authors":"Atsushi Kondo, Yutaro Watanabe, Kentaro Sakai, Yutaka Iwahori, E. Hara, Hisaya Katoh","doi":"10.3390/jcs8040130","DOIUrl":null,"url":null,"abstract":"Finite element analyses of the propagation of damage such as fiber compressive failure and delamination have greatly contributed to the understanding of failure mechanisms of fiber-reinforced plastics owing to extensive studies on methodologies using Continuum Damage Mechanics and Fracture Mechanics. Problems without the need for consideration of inertia, such as Double-Cantilever Beam tests, are usually solved by implicit FE solvers, and explicit FE solvers are appropriate for phenomena that progress with very high velocity such as impact problems. However, quasi-static problems with unstable damage propagation observed in experiments such as Open-Hole Compression tests are still not easy to solve for both types of solvers. We propose a method to enable the static FE solver to solve problems with unstable propagation of damage. In the present method, an additional process of convergence checks on the averaged energy release rate of damaged elements is incorporated in a conventional Newton–Raphson scheme. The feasibility of the present method was validated by two numerical examples consisting of analyses of Open-Hole Compression tests and Double-Cantilever Beam tests. The results of the analyses of OHC tests showed that the present method was applicable to problems with unstable damage propagation. In addition, the results from the analyses of DCB tests with the present method indicated that mesh density and loading history are not significantly influential to the solution.","PeriodicalId":502935,"journal":{"name":"Journal of Composites Science","volume":"43 12","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Numerical Method for Unstable Propagation of Damage in Fiber-Reinforced Plastics with an Implicit Static FE Solver\",\"authors\":\"Atsushi Kondo, Yutaro Watanabe, Kentaro Sakai, Yutaka Iwahori, E. Hara, Hisaya Katoh\",\"doi\":\"10.3390/jcs8040130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Finite element analyses of the propagation of damage such as fiber compressive failure and delamination have greatly contributed to the understanding of failure mechanisms of fiber-reinforced plastics owing to extensive studies on methodologies using Continuum Damage Mechanics and Fracture Mechanics. Problems without the need for consideration of inertia, such as Double-Cantilever Beam tests, are usually solved by implicit FE solvers, and explicit FE solvers are appropriate for phenomena that progress with very high velocity such as impact problems. However, quasi-static problems with unstable damage propagation observed in experiments such as Open-Hole Compression tests are still not easy to solve for both types of solvers. We propose a method to enable the static FE solver to solve problems with unstable propagation of damage. In the present method, an additional process of convergence checks on the averaged energy release rate of damaged elements is incorporated in a conventional Newton–Raphson scheme. The feasibility of the present method was validated by two numerical examples consisting of analyses of Open-Hole Compression tests and Double-Cantilever Beam tests. The results of the analyses of OHC tests showed that the present method was applicable to problems with unstable damage propagation. In addition, the results from the analyses of DCB tests with the present method indicated that mesh density and loading history are not significantly influential to the solution.\",\"PeriodicalId\":502935,\"journal\":{\"name\":\"Journal of Composites Science\",\"volume\":\"43 12\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Composites Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jcs8040130\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Composites Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jcs8040130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
由于对连续破坏力学和断裂力学方法的广泛研究,对纤维压缩破坏和分层等破坏传播的有限元分析极大地促进了对纤维增强塑料破坏机理的理解。不需要考虑惯性的问题,如双悬臂梁试验,通常采用隐式 FE 求解器求解,而显式 FE 求解器则适用于速度非常快的现象,如冲击问题。然而,在开孔压缩试验等实验中观察到的具有不稳定损伤传播的准静态问题,对于这两种求解器来说都不容易求解。我们提出了一种方法,使静态 FE 求解器能够解决损伤不稳定传播的问题。在本方法中,在传统的牛顿-拉斐森方案中加入了对受损元素的平均能量释放率进行收敛检查的附加过程。本方法的可行性通过开孔压缩试验和双悬臂梁试验的两个数值实例进行了验证。开孔压缩试验的分析结果表明,本方法适用于不稳定的损伤传播问题。此外,使用本方法分析 DCB 试验的结果表明,网格密度和加载历史对求解的影响不大。
A Numerical Method for Unstable Propagation of Damage in Fiber-Reinforced Plastics with an Implicit Static FE Solver
Finite element analyses of the propagation of damage such as fiber compressive failure and delamination have greatly contributed to the understanding of failure mechanisms of fiber-reinforced plastics owing to extensive studies on methodologies using Continuum Damage Mechanics and Fracture Mechanics. Problems without the need for consideration of inertia, such as Double-Cantilever Beam tests, are usually solved by implicit FE solvers, and explicit FE solvers are appropriate for phenomena that progress with very high velocity such as impact problems. However, quasi-static problems with unstable damage propagation observed in experiments such as Open-Hole Compression tests are still not easy to solve for both types of solvers. We propose a method to enable the static FE solver to solve problems with unstable propagation of damage. In the present method, an additional process of convergence checks on the averaged energy release rate of damaged elements is incorporated in a conventional Newton–Raphson scheme. The feasibility of the present method was validated by two numerical examples consisting of analyses of Open-Hole Compression tests and Double-Cantilever Beam tests. The results of the analyses of OHC tests showed that the present method was applicable to problems with unstable damage propagation. In addition, the results from the analyses of DCB tests with the present method indicated that mesh density and loading history are not significantly influential to the solution.