基于深度学习的新型数据分析模型,用于智能电网中的太阳能光伏发电和用电预测

IF 2.4 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Applied Computational Intelligence and Soft Computing Pub Date : 2024-04-02 DOI:10.1155/2024/9257508
C. Mbey, Felix Ghislain Yem Souhe, Vinny Junior Foba Kakeu, A. Boum
{"title":"基于深度学习的新型数据分析模型,用于智能电网中的太阳能光伏发电和用电预测","authors":"C. Mbey, Felix Ghislain Yem Souhe, Vinny Junior Foba Kakeu, A. Boum","doi":"10.1155/2024/9257508","DOIUrl":null,"url":null,"abstract":"With the installation of solar panels around the world and the permanent fluctuation of climatic factors, it is, therefore, important to provide the necessary energy in the electrical network in order to satisfy the electrical demand at all times for smart grid applications. This study first presents a comprehensive and comparative review of existing deep learning methods used for smart grid applications such as solar photovoltaic (PV) generation forecasting and power consumption forecasting. In this work, electrical consumption forecasting is long term and will consider smart meter data and socioeconomic and demographic data. Photovoltaic power generation forecasting is short term by considering climatic data such as solar irradiance, temperature, and humidity. Moreover, we have proposed a novel hybrid deep learning method based on multilayer perceptron (MLP), long short-term memory (LSTM), and genetic algorithm (GA). We then simulated all the deep learning methods on a climate and electricity consumption dataset for the city of Douala. Electrical consumption data are collected from smart meters installed at consumers in Douala. Climate data are collected at the climate management center in the city of Douala. The results obtained show the outperformance of the proposed optimized method based on deep learning in the both electrical consumption and PV power generation forecasting and its superiority compared to basic methods of deep learning such as support vector machine (SVM), MLP, recurrent neural network (RNN), and random forest algorithm (RFA).","PeriodicalId":44894,"journal":{"name":"Applied Computational Intelligence and Soft Computing","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Deep Learning-Based Data Analysis Model for Solar Photovoltaic Power Generation and Electrical Consumption Forecasting in the Smart Power Grid\",\"authors\":\"C. Mbey, Felix Ghislain Yem Souhe, Vinny Junior Foba Kakeu, A. Boum\",\"doi\":\"10.1155/2024/9257508\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the installation of solar panels around the world and the permanent fluctuation of climatic factors, it is, therefore, important to provide the necessary energy in the electrical network in order to satisfy the electrical demand at all times for smart grid applications. This study first presents a comprehensive and comparative review of existing deep learning methods used for smart grid applications such as solar photovoltaic (PV) generation forecasting and power consumption forecasting. In this work, electrical consumption forecasting is long term and will consider smart meter data and socioeconomic and demographic data. Photovoltaic power generation forecasting is short term by considering climatic data such as solar irradiance, temperature, and humidity. Moreover, we have proposed a novel hybrid deep learning method based on multilayer perceptron (MLP), long short-term memory (LSTM), and genetic algorithm (GA). We then simulated all the deep learning methods on a climate and electricity consumption dataset for the city of Douala. Electrical consumption data are collected from smart meters installed at consumers in Douala. Climate data are collected at the climate management center in the city of Douala. The results obtained show the outperformance of the proposed optimized method based on deep learning in the both electrical consumption and PV power generation forecasting and its superiority compared to basic methods of deep learning such as support vector machine (SVM), MLP, recurrent neural network (RNN), and random forest algorithm (RFA).\",\"PeriodicalId\":44894,\"journal\":{\"name\":\"Applied Computational Intelligence and Soft Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Computational Intelligence and Soft Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/9257508\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computational Intelligence and Soft Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2024/9257508","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

随着太阳能电池板在世界各地的安装以及气候因素的长期波动,因此,在智能电网应用中为电网提供必要的能源以随时满足电力需求非常重要。本研究首先对用于太阳能光伏发电预测和电力消耗预测等智能电网应用的现有深度学习方法进行了全面的比较综述。在这项工作中,电力消耗预测是长期性的,将考虑智能电表数据以及社会经济和人口数据。光伏发电预测是短期预测,将考虑太阳辐照度、温度和湿度等气候数据。此外,我们还提出了一种基于多层感知器(MLP)、长短期记忆(LSTM)和遗传算法(GA)的新型混合深度学习方法。然后,我们在杜阿拉市的气候和电力消耗数据集上模拟了所有深度学习方法。用电数据来自安装在杜阿拉用户处的智能电表。气候数据由杜阿拉市气候管理中心收集。得出的结果表明,基于深度学习的优化方法在用电量和光伏发电量预测方面均表现出色,与支持向量机(SVM)、MLP、递归神经网络(RNN)和随机森林算法(RFA)等深度学习基本方法相比更具优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Novel Deep Learning-Based Data Analysis Model for Solar Photovoltaic Power Generation and Electrical Consumption Forecasting in the Smart Power Grid
With the installation of solar panels around the world and the permanent fluctuation of climatic factors, it is, therefore, important to provide the necessary energy in the electrical network in order to satisfy the electrical demand at all times for smart grid applications. This study first presents a comprehensive and comparative review of existing deep learning methods used for smart grid applications such as solar photovoltaic (PV) generation forecasting and power consumption forecasting. In this work, electrical consumption forecasting is long term and will consider smart meter data and socioeconomic and demographic data. Photovoltaic power generation forecasting is short term by considering climatic data such as solar irradiance, temperature, and humidity. Moreover, we have proposed a novel hybrid deep learning method based on multilayer perceptron (MLP), long short-term memory (LSTM), and genetic algorithm (GA). We then simulated all the deep learning methods on a climate and electricity consumption dataset for the city of Douala. Electrical consumption data are collected from smart meters installed at consumers in Douala. Climate data are collected at the climate management center in the city of Douala. The results obtained show the outperformance of the proposed optimized method based on deep learning in the both electrical consumption and PV power generation forecasting and its superiority compared to basic methods of deep learning such as support vector machine (SVM), MLP, recurrent neural network (RNN), and random forest algorithm (RFA).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Computational Intelligence and Soft Computing
Applied Computational Intelligence and Soft Computing COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
6.10
自引率
3.40%
发文量
59
审稿时长
21 weeks
期刊介绍: Applied Computational Intelligence and Soft Computing will focus on the disciplines of computer science, engineering, and mathematics. The scope of the journal includes developing applications related to all aspects of natural and social sciences by employing the technologies of computational intelligence and soft computing. The new applications of using computational intelligence and soft computing are still in development. Although computational intelligence and soft computing are established fields, the new applications of using computational intelligence and soft computing can be regarded as an emerging field, which is the focus of this journal.
期刊最新文献
Morphological Accuracy Data Clustering: A Novel Algorithm for Enhanced Cluster Analysis Indonesian Lip-Reading Detection and Recognition Based on Lip Shape Using Face Mesh and Long-Term Recurrent Convolutional Network A Novel Deep Learning-Based Data Analysis Model for Solar Photovoltaic Power Generation and Electrical Consumption Forecasting in the Smart Power Grid Emotion Modeling in Speech Signals: Discrete Wavelet Transform and Machine Learning Tools for Emotion Recognition System A Hybrid Expert System for Estimation of the Manufacturability of a Notional Design
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1