Yu Shen , Xin Du , Yuxing Shi , Loic Jiresse Nguetsa Kuate , Zhouze Chen , Cheng Zhu , Lei Tan , Feng Guo , Shijie Li , Weilong Shi
{"title":"光致变色高晶 C3N5 纳米片上的束缚态电子协同作用可提高光催化制取 H2 的电荷分离能力","authors":"Yu Shen , Xin Du , Yuxing Shi , Loic Jiresse Nguetsa Kuate , Zhouze Chen , Cheng Zhu , Lei Tan , Feng Guo , Shijie Li , Weilong Shi","doi":"10.1016/j.apmate.2024.100202","DOIUrl":null,"url":null,"abstract":"<div><p>Solar-driven water splitting for photocatalytic hydrogen evolution is considered a highly promising and cost-effective solution to achieve a stable renewable energy supply. However, the sluggish kinetics of electron-hole pairs’ separation poses challenges in attaining satisfactory hydrogen production efficiency. Herein, we synthesized the exceptional performance of highly crystalline C<sub>3</sub>N<sub>5</sub> (HC–C<sub>3</sub>N<sub>5</sub>) nanosheet as a photocatalyst, demonstrating a remarkable hydrogen evolution rate of 3.01 mmol h<sup>−1</sup> g<sup>−1</sup>, which surpasses that of bulk C<sub>3</sub>N<sub>5</sub> (B–C<sub>3</sub>N<sub>5</sub>) by a factor of 3.27. Experimental and theoretical analyses reveal that HC-C<sub>3</sub>N<sub>5</sub> nanosheets exhibit intriguing macroscopic photoinduced color changes, effectively broadening the absorption spectrum and significantly enhancing the generation of excitons. Besides, the cyano groups in HC-C<sub>3</sub>N<sub>5</sub> efficiently captures and converts photoexcited electrons into bound states, thereby prolonging their lifetimes and effectively separating electrons and holes into catalytically active regions. This research provides valuable insights into the establishment of bound electronic states for developing efficient photocatalysts.</p></div>","PeriodicalId":7283,"journal":{"name":"Advanced Powder Materials","volume":"3 4","pages":"Article 100202"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772834X24000332/pdfft?md5=f8a2554db749073890ffdbae68512abf&pid=1-s2.0-S2772834X24000332-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Bound-state electrons synergy over photochromic high-crystalline C3N5 nanosheets in enhancing charge separation for photocatalytic H2 production\",\"authors\":\"Yu Shen , Xin Du , Yuxing Shi , Loic Jiresse Nguetsa Kuate , Zhouze Chen , Cheng Zhu , Lei Tan , Feng Guo , Shijie Li , Weilong Shi\",\"doi\":\"10.1016/j.apmate.2024.100202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Solar-driven water splitting for photocatalytic hydrogen evolution is considered a highly promising and cost-effective solution to achieve a stable renewable energy supply. However, the sluggish kinetics of electron-hole pairs’ separation poses challenges in attaining satisfactory hydrogen production efficiency. Herein, we synthesized the exceptional performance of highly crystalline C<sub>3</sub>N<sub>5</sub> (HC–C<sub>3</sub>N<sub>5</sub>) nanosheet as a photocatalyst, demonstrating a remarkable hydrogen evolution rate of 3.01 mmol h<sup>−1</sup> g<sup>−1</sup>, which surpasses that of bulk C<sub>3</sub>N<sub>5</sub> (B–C<sub>3</sub>N<sub>5</sub>) by a factor of 3.27. Experimental and theoretical analyses reveal that HC-C<sub>3</sub>N<sub>5</sub> nanosheets exhibit intriguing macroscopic photoinduced color changes, effectively broadening the absorption spectrum and significantly enhancing the generation of excitons. Besides, the cyano groups in HC-C<sub>3</sub>N<sub>5</sub> efficiently captures and converts photoexcited electrons into bound states, thereby prolonging their lifetimes and effectively separating electrons and holes into catalytically active regions. This research provides valuable insights into the establishment of bound electronic states for developing efficient photocatalysts.</p></div>\",\"PeriodicalId\":7283,\"journal\":{\"name\":\"Advanced Powder Materials\",\"volume\":\"3 4\",\"pages\":\"Article 100202\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772834X24000332/pdfft?md5=f8a2554db749073890ffdbae68512abf&pid=1-s2.0-S2772834X24000332-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Powder Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772834X24000332\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Powder Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772834X24000332","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Bound-state electrons synergy over photochromic high-crystalline C3N5 nanosheets in enhancing charge separation for photocatalytic H2 production
Solar-driven water splitting for photocatalytic hydrogen evolution is considered a highly promising and cost-effective solution to achieve a stable renewable energy supply. However, the sluggish kinetics of electron-hole pairs’ separation poses challenges in attaining satisfactory hydrogen production efficiency. Herein, we synthesized the exceptional performance of highly crystalline C3N5 (HC–C3N5) nanosheet as a photocatalyst, demonstrating a remarkable hydrogen evolution rate of 3.01 mmol h−1 g−1, which surpasses that of bulk C3N5 (B–C3N5) by a factor of 3.27. Experimental and theoretical analyses reveal that HC-C3N5 nanosheets exhibit intriguing macroscopic photoinduced color changes, effectively broadening the absorption spectrum and significantly enhancing the generation of excitons. Besides, the cyano groups in HC-C3N5 efficiently captures and converts photoexcited electrons into bound states, thereby prolonging their lifetimes and effectively separating electrons and holes into catalytically active regions. This research provides valuable insights into the establishment of bound electronic states for developing efficient photocatalysts.