Smaragda-Maria Argyri , Carl Andersson , Nicolas Paillet , Lars Evenäs , Jens Ahrens , Asier Marzo , Víctor Contreras , Romain Bordes
{"title":"用于非接触实验的定制高性能声学悬浮器","authors":"Smaragda-Maria Argyri , Carl Andersson , Nicolas Paillet , Lars Evenäs , Jens Ahrens , Asier Marzo , Víctor Contreras , Romain Bordes","doi":"10.1016/j.jsamd.2024.100720","DOIUrl":null,"url":null,"abstract":"<div><p>Acoustic levitators are becoming increasingly common research instrumentation for contact-free, lab-in-a-droplet studies. Recently, levitators that employ multiple, small, ultrasonic transducers have gained popularity, given their low price, temperature and spatial stability, low voltage, and accessibility. Yet, the current state-of-the-art device, TinyLev, presents limitations for certain applications in terms of stability, strength, and compactness. Herein, we developed three new levitators and evaluated the effect of the construction parameters (<em>e.g.</em>, distance of opposing arrays, number and arrangement of transducers, <em>etc.</em>) on their performance. The best performing levitator from this work had half the number of transducers, compared to TinyLev, though presented 1.7 and 3.5 times higher levitation capacity along the horizontal and vertical configurations, respectively, and 4.7 and 2.0 times higher horizontal and vertical stability of a levitated object, respectively. Additionally, we present a direct means to evaluate the acoustic radiation net force acting on a deformable object for uniaxial levitators, without the use of a microphone or a schlieren deflectometer for this type of levitators. The theoretical and experimental observations provide insights for adapting the acoustic levitator design for specific applications. Finally, we developed an open-source software which allows the evaluation of the acoustic pressure field generated by customized designs and provides the necessary files for 3D printing the scaffold of the levitator. This study aims to increase accessibility and promote further developments in contact-free experiments.</p></div>","PeriodicalId":17219,"journal":{"name":"Journal of Science: Advanced Materials and Devices","volume":"9 3","pages":"Article 100720"},"PeriodicalIF":6.7000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468217924000510/pdfft?md5=5db67e043ca70f130e5c4432b8ead876&pid=1-s2.0-S2468217924000510-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Customized and high-performing acoustic levitators for contact-free experiments\",\"authors\":\"Smaragda-Maria Argyri , Carl Andersson , Nicolas Paillet , Lars Evenäs , Jens Ahrens , Asier Marzo , Víctor Contreras , Romain Bordes\",\"doi\":\"10.1016/j.jsamd.2024.100720\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Acoustic levitators are becoming increasingly common research instrumentation for contact-free, lab-in-a-droplet studies. Recently, levitators that employ multiple, small, ultrasonic transducers have gained popularity, given their low price, temperature and spatial stability, low voltage, and accessibility. Yet, the current state-of-the-art device, TinyLev, presents limitations for certain applications in terms of stability, strength, and compactness. Herein, we developed three new levitators and evaluated the effect of the construction parameters (<em>e.g.</em>, distance of opposing arrays, number and arrangement of transducers, <em>etc.</em>) on their performance. The best performing levitator from this work had half the number of transducers, compared to TinyLev, though presented 1.7 and 3.5 times higher levitation capacity along the horizontal and vertical configurations, respectively, and 4.7 and 2.0 times higher horizontal and vertical stability of a levitated object, respectively. Additionally, we present a direct means to evaluate the acoustic radiation net force acting on a deformable object for uniaxial levitators, without the use of a microphone or a schlieren deflectometer for this type of levitators. The theoretical and experimental observations provide insights for adapting the acoustic levitator design for specific applications. Finally, we developed an open-source software which allows the evaluation of the acoustic pressure field generated by customized designs and provides the necessary files for 3D printing the scaffold of the levitator. This study aims to increase accessibility and promote further developments in contact-free experiments.</p></div>\",\"PeriodicalId\":17219,\"journal\":{\"name\":\"Journal of Science: Advanced Materials and Devices\",\"volume\":\"9 3\",\"pages\":\"Article 100720\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2468217924000510/pdfft?md5=5db67e043ca70f130e5c4432b8ead876&pid=1-s2.0-S2468217924000510-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Science: Advanced Materials and Devices\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468217924000510\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Science: Advanced Materials and Devices","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468217924000510","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Customized and high-performing acoustic levitators for contact-free experiments
Acoustic levitators are becoming increasingly common research instrumentation for contact-free, lab-in-a-droplet studies. Recently, levitators that employ multiple, small, ultrasonic transducers have gained popularity, given their low price, temperature and spatial stability, low voltage, and accessibility. Yet, the current state-of-the-art device, TinyLev, presents limitations for certain applications in terms of stability, strength, and compactness. Herein, we developed three new levitators and evaluated the effect of the construction parameters (e.g., distance of opposing arrays, number and arrangement of transducers, etc.) on their performance. The best performing levitator from this work had half the number of transducers, compared to TinyLev, though presented 1.7 and 3.5 times higher levitation capacity along the horizontal and vertical configurations, respectively, and 4.7 and 2.0 times higher horizontal and vertical stability of a levitated object, respectively. Additionally, we present a direct means to evaluate the acoustic radiation net force acting on a deformable object for uniaxial levitators, without the use of a microphone or a schlieren deflectometer for this type of levitators. The theoretical and experimental observations provide insights for adapting the acoustic levitator design for specific applications. Finally, we developed an open-source software which allows the evaluation of the acoustic pressure field generated by customized designs and provides the necessary files for 3D printing the scaffold of the levitator. This study aims to increase accessibility and promote further developments in contact-free experiments.
期刊介绍:
In 1985, the Journal of Science was founded as a platform for publishing national and international research papers across various disciplines, including natural sciences, technology, social sciences, and humanities. Over the years, the journal has experienced remarkable growth in terms of quality, size, and scope. Today, it encompasses a diverse range of publications dedicated to academic research.
Considering the rapid expansion of materials science, we are pleased to introduce the Journal of Science: Advanced Materials and Devices. This new addition to our journal series offers researchers an exciting opportunity to publish their work on all aspects of materials science and technology within the esteemed Journal of Science.
With this development, we aim to revolutionize the way research in materials science is expressed and organized, further strengthening our commitment to promoting outstanding research across various scientific and technological fields.