Jizhen Zhang , Xiao Xiao , Jianguo Wang , Wei Lin , Denglin Han , Chenchen Wang , Yu Li , Yan Xiong , Xiaochan Zhang
{"title":"东北松辽盆地白垩纪嫩江页岩含煤孔隙结构与分形特征","authors":"Jizhen Zhang , Xiao Xiao , Jianguo Wang , Wei Lin , Denglin Han , Chenchen Wang , Yu Li , Yan Xiong , Xiaochan Zhang","doi":"10.1016/j.jnggs.2024.03.005","DOIUrl":null,"url":null,"abstract":"<div><p>Shale oil and gas resources mainly exist in the pore and fracture system. Quantitative characterization of pore development characteristics and gas-bearing properties is crucial for shale reservoir evaluation. The pore development of shale reservoir exhibits strong complexity and heterogeneity, and research on pore development characteristics of coal measure shale lags behind that of marine shale reservoir. Hence, it is urgent to investigate the pore heterogeneity characteristics of coal-bearing shale and its influence on gas bearing properties. Therefore, the coal-bearing Cretaceous Nenjiang shales from the Songyuan area of the Songliao Basin were selected as the research object in this study. Through total organic carbon (TOC) analysis, X-ray diffraction experiments, porosity analysis, nitrogen adsorption–desorption experiments, and methane isothermal adsorption experiments, the characteristics of pore structure, heterogeneity, and gas bearing properties of coal-bearing shale were analyzed. The influence of rock and mineral components on pore structure and heterogeneity characteristics, the relationship between pore structure characteristics and fractal characteristics, and the effects of pore structure and heterogeneity on gas bearing properties were also discussed. The results show that: (1) The organic matter abundance of the shale in the Nenjiang Formation does not change significantly (the average TOC content is 2.38%). Ink bottle-shaped pores are mostly developed, and the Nenjiang shale is rich in clay minerals (average content 55.6%), with slit-shaped pores mostly developed. The pore surface of shale exhibits obvious fractal characteristics, with average fractal dimensions <em>D</em><sub>1</sub> and <em>D</em><sub>2</sub> of 2.54 and 2.74, respectively, indicating that the internal structure is more complex than the surface structure. (2) The enrichment of organic carbon increases the specific surface area by affecting the development of micropores and pores, consequently increasing the fractal dimension of pores. Similarly, the development of clay minerals increases the number of mesopores and macropores, thereby increasing the fractal dimension of pores. (3) Small pores develop larger specific surface areas, which increases the complexity and heterogeneity of the pore structure. This promotes remarkable fractal characteristics, expands the adsorption sites, and improves the adsorption capacity. This work will provide a scientific theoretical basis for the comprehensive evaluation of coal-bearing shale reservoirs and research on shale gas reservoir formation theory.</p></div>","PeriodicalId":100808,"journal":{"name":"Journal of Natural Gas Geoscience","volume":"9 3","pages":"Pages 197-208"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468256X24000233/pdfft?md5=ceb657d8c62047cb2ff610845a5cf450&pid=1-s2.0-S2468256X24000233-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Pore structure and fractal characteristics of coal-bearing Cretaceous Nenjiang shales from Songliao Basin, Northeast China\",\"authors\":\"Jizhen Zhang , Xiao Xiao , Jianguo Wang , Wei Lin , Denglin Han , Chenchen Wang , Yu Li , Yan Xiong , Xiaochan Zhang\",\"doi\":\"10.1016/j.jnggs.2024.03.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Shale oil and gas resources mainly exist in the pore and fracture system. Quantitative characterization of pore development characteristics and gas-bearing properties is crucial for shale reservoir evaluation. The pore development of shale reservoir exhibits strong complexity and heterogeneity, and research on pore development characteristics of coal measure shale lags behind that of marine shale reservoir. Hence, it is urgent to investigate the pore heterogeneity characteristics of coal-bearing shale and its influence on gas bearing properties. Therefore, the coal-bearing Cretaceous Nenjiang shales from the Songyuan area of the Songliao Basin were selected as the research object in this study. Through total organic carbon (TOC) analysis, X-ray diffraction experiments, porosity analysis, nitrogen adsorption–desorption experiments, and methane isothermal adsorption experiments, the characteristics of pore structure, heterogeneity, and gas bearing properties of coal-bearing shale were analyzed. The influence of rock and mineral components on pore structure and heterogeneity characteristics, the relationship between pore structure characteristics and fractal characteristics, and the effects of pore structure and heterogeneity on gas bearing properties were also discussed. The results show that: (1) The organic matter abundance of the shale in the Nenjiang Formation does not change significantly (the average TOC content is 2.38%). Ink bottle-shaped pores are mostly developed, and the Nenjiang shale is rich in clay minerals (average content 55.6%), with slit-shaped pores mostly developed. The pore surface of shale exhibits obvious fractal characteristics, with average fractal dimensions <em>D</em><sub>1</sub> and <em>D</em><sub>2</sub> of 2.54 and 2.74, respectively, indicating that the internal structure is more complex than the surface structure. (2) The enrichment of organic carbon increases the specific surface area by affecting the development of micropores and pores, consequently increasing the fractal dimension of pores. Similarly, the development of clay minerals increases the number of mesopores and macropores, thereby increasing the fractal dimension of pores. (3) Small pores develop larger specific surface areas, which increases the complexity and heterogeneity of the pore structure. This promotes remarkable fractal characteristics, expands the adsorption sites, and improves the adsorption capacity. This work will provide a scientific theoretical basis for the comprehensive evaluation of coal-bearing shale reservoirs and research on shale gas reservoir formation theory.</p></div>\",\"PeriodicalId\":100808,\"journal\":{\"name\":\"Journal of Natural Gas Geoscience\",\"volume\":\"9 3\",\"pages\":\"Pages 197-208\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2468256X24000233/pdfft?md5=ceb657d8c62047cb2ff610845a5cf450&pid=1-s2.0-S2468256X24000233-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Natural Gas Geoscience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468256X24000233\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Natural Gas Geoscience","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468256X24000233","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Pore structure and fractal characteristics of coal-bearing Cretaceous Nenjiang shales from Songliao Basin, Northeast China
Shale oil and gas resources mainly exist in the pore and fracture system. Quantitative characterization of pore development characteristics and gas-bearing properties is crucial for shale reservoir evaluation. The pore development of shale reservoir exhibits strong complexity and heterogeneity, and research on pore development characteristics of coal measure shale lags behind that of marine shale reservoir. Hence, it is urgent to investigate the pore heterogeneity characteristics of coal-bearing shale and its influence on gas bearing properties. Therefore, the coal-bearing Cretaceous Nenjiang shales from the Songyuan area of the Songliao Basin were selected as the research object in this study. Through total organic carbon (TOC) analysis, X-ray diffraction experiments, porosity analysis, nitrogen adsorption–desorption experiments, and methane isothermal adsorption experiments, the characteristics of pore structure, heterogeneity, and gas bearing properties of coal-bearing shale were analyzed. The influence of rock and mineral components on pore structure and heterogeneity characteristics, the relationship between pore structure characteristics and fractal characteristics, and the effects of pore structure and heterogeneity on gas bearing properties were also discussed. The results show that: (1) The organic matter abundance of the shale in the Nenjiang Formation does not change significantly (the average TOC content is 2.38%). Ink bottle-shaped pores are mostly developed, and the Nenjiang shale is rich in clay minerals (average content 55.6%), with slit-shaped pores mostly developed. The pore surface of shale exhibits obvious fractal characteristics, with average fractal dimensions D1 and D2 of 2.54 and 2.74, respectively, indicating that the internal structure is more complex than the surface structure. (2) The enrichment of organic carbon increases the specific surface area by affecting the development of micropores and pores, consequently increasing the fractal dimension of pores. Similarly, the development of clay minerals increases the number of mesopores and macropores, thereby increasing the fractal dimension of pores. (3) Small pores develop larger specific surface areas, which increases the complexity and heterogeneity of the pore structure. This promotes remarkable fractal characteristics, expands the adsorption sites, and improves the adsorption capacity. This work will provide a scientific theoretical basis for the comprehensive evaluation of coal-bearing shale reservoirs and research on shale gas reservoir formation theory.