{"title":"TMAS:区块链交易不当行为分析方案","authors":"","doi":"10.1016/j.bcra.2024.100197","DOIUrl":null,"url":null,"abstract":"<div><p>Blockchain-based cryptocurrencies, such as Bitcoins, are increasingly popular. However, the decentralized and anonymous nature of these currencies can also be (ab)used for nefarious activities such as money laundering, thus reinforcing the importance of designing tools to effectively detect malicious transaction misbehaviors. In this paper, we propose TMAS, a transaction misbehavior analysis scheme for blockchain-based cryptocurrencies. Specifically, the proposed system includes ten features in the transaction graph, two heuristic money laundering models, and an analysis method for account linkage, which identifies accounts that are distinct but controlled by an identical entity. To evaluate the effectiveness of our proposed indicators and models, we analyze 100 million transactions and compute transaction features, and are able to identify a number of suspicious accounts. Moreover, the proposed methods can be applied to other cryptocurrencies, such as token-based cryptocurrencies (e.g., Bitcoins) and account-based cryptocurrencies (e.g., Ethereum).</p></div>","PeriodicalId":53141,"journal":{"name":"Blockchain-Research and Applications","volume":"5 3","pages":"Article 100197"},"PeriodicalIF":6.9000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2096720924000101/pdfft?md5=0bb3bae5cba1c0b9cda4f64742a45a28&pid=1-s2.0-S2096720924000101-main.pdf","citationCount":"0","resultStr":"{\"title\":\"TMAS: A transaction misbehavior analysis scheme for blockchain\",\"authors\":\"\",\"doi\":\"10.1016/j.bcra.2024.100197\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Blockchain-based cryptocurrencies, such as Bitcoins, are increasingly popular. However, the decentralized and anonymous nature of these currencies can also be (ab)used for nefarious activities such as money laundering, thus reinforcing the importance of designing tools to effectively detect malicious transaction misbehaviors. In this paper, we propose TMAS, a transaction misbehavior analysis scheme for blockchain-based cryptocurrencies. Specifically, the proposed system includes ten features in the transaction graph, two heuristic money laundering models, and an analysis method for account linkage, which identifies accounts that are distinct but controlled by an identical entity. To evaluate the effectiveness of our proposed indicators and models, we analyze 100 million transactions and compute transaction features, and are able to identify a number of suspicious accounts. Moreover, the proposed methods can be applied to other cryptocurrencies, such as token-based cryptocurrencies (e.g., Bitcoins) and account-based cryptocurrencies (e.g., Ethereum).</p></div>\",\"PeriodicalId\":53141,\"journal\":{\"name\":\"Blockchain-Research and Applications\",\"volume\":\"5 3\",\"pages\":\"Article 100197\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2024-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2096720924000101/pdfft?md5=0bb3bae5cba1c0b9cda4f64742a45a28&pid=1-s2.0-S2096720924000101-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Blockchain-Research and Applications\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2096720924000101\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Blockchain-Research and Applications","FirstCategoryId":"1093","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2096720924000101","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
TMAS: A transaction misbehavior analysis scheme for blockchain
Blockchain-based cryptocurrencies, such as Bitcoins, are increasingly popular. However, the decentralized and anonymous nature of these currencies can also be (ab)used for nefarious activities such as money laundering, thus reinforcing the importance of designing tools to effectively detect malicious transaction misbehaviors. In this paper, we propose TMAS, a transaction misbehavior analysis scheme for blockchain-based cryptocurrencies. Specifically, the proposed system includes ten features in the transaction graph, two heuristic money laundering models, and an analysis method for account linkage, which identifies accounts that are distinct but controlled by an identical entity. To evaluate the effectiveness of our proposed indicators and models, we analyze 100 million transactions and compute transaction features, and are able to identify a number of suspicious accounts. Moreover, the proposed methods can be applied to other cryptocurrencies, such as token-based cryptocurrencies (e.g., Bitcoins) and account-based cryptocurrencies (e.g., Ethereum).
期刊介绍:
Blockchain: Research and Applications is an international, peer reviewed journal for researchers, engineers, and practitioners to present the latest advances and innovations in blockchain research. The journal publishes theoretical and applied papers in established and emerging areas of blockchain research to shape the future of blockchain technology.