Qiaojuan Yu , Shigui Du , Qizhi Zhu , Zhanyou Luo , Sili Liu , Lunyang Zhao
{"title":"基于微机械的扩展塑性破坏模型,用于理解水对准脆性岩石的影响","authors":"Qiaojuan Yu , Shigui Du , Qizhi Zhu , Zhanyou Luo , Sili Liu , Lunyang Zhao","doi":"10.1016/j.ijmst.2024.02.006","DOIUrl":null,"url":null,"abstract":"<div><p>Water effects on the mechanical properties of rocks have been extensively investigated through experiments and numerical models. However, few studies have established a comprehensive link between the microscopic mechanisms of water-related micro-crack and the constitutive behaviors of rocks. In this work, we shall propose an extended micromechanical-based plastic damage model for understanding weakening effect induced by the presence of water between micro-crack’s surfaces on quasi-brittle rocks, based on the Mori-Tanaka homogenization and irreversible thermodynamics framework. Regarding the physical mechanism, water strengthens micro-crack propagation, which induces damage evolution during the pre- and post-stage, and weakens the elastic effective properties of rock matrix. After proposing a special calibration procedure for the determination of model parameters based on the laboratory compression tests, the proposed micromechanical-based model is verified by comparing the model predictions to the experimental results. The model effectively captures the mechanical behaviors of quasi-brittle rocks subjected to the weakening effects of water.</p></div>","PeriodicalId":48625,"journal":{"name":"International Journal of Mining Science and Technology","volume":"34 3","pages":"Pages 289-304"},"PeriodicalIF":11.7000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2095268624000302/pdfft?md5=5085deef821a7aabe87271a787c07180&pid=1-s2.0-S2095268624000302-main.pdf","citationCount":"0","resultStr":"{\"title\":\"An extended micromechanical-based plastic damage model for understanding water effects on quasi-brittle rocks\",\"authors\":\"Qiaojuan Yu , Shigui Du , Qizhi Zhu , Zhanyou Luo , Sili Liu , Lunyang Zhao\",\"doi\":\"10.1016/j.ijmst.2024.02.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Water effects on the mechanical properties of rocks have been extensively investigated through experiments and numerical models. However, few studies have established a comprehensive link between the microscopic mechanisms of water-related micro-crack and the constitutive behaviors of rocks. In this work, we shall propose an extended micromechanical-based plastic damage model for understanding weakening effect induced by the presence of water between micro-crack’s surfaces on quasi-brittle rocks, based on the Mori-Tanaka homogenization and irreversible thermodynamics framework. Regarding the physical mechanism, water strengthens micro-crack propagation, which induces damage evolution during the pre- and post-stage, and weakens the elastic effective properties of rock matrix. After proposing a special calibration procedure for the determination of model parameters based on the laboratory compression tests, the proposed micromechanical-based model is verified by comparing the model predictions to the experimental results. The model effectively captures the mechanical behaviors of quasi-brittle rocks subjected to the weakening effects of water.</p></div>\",\"PeriodicalId\":48625,\"journal\":{\"name\":\"International Journal of Mining Science and Technology\",\"volume\":\"34 3\",\"pages\":\"Pages 289-304\"},\"PeriodicalIF\":11.7000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2095268624000302/pdfft?md5=5085deef821a7aabe87271a787c07180&pid=1-s2.0-S2095268624000302-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mining Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2095268624000302\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MINING & MINERAL PROCESSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mining Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095268624000302","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MINING & MINERAL PROCESSING","Score":null,"Total":0}
An extended micromechanical-based plastic damage model for understanding water effects on quasi-brittle rocks
Water effects on the mechanical properties of rocks have been extensively investigated through experiments and numerical models. However, few studies have established a comprehensive link between the microscopic mechanisms of water-related micro-crack and the constitutive behaviors of rocks. In this work, we shall propose an extended micromechanical-based plastic damage model for understanding weakening effect induced by the presence of water between micro-crack’s surfaces on quasi-brittle rocks, based on the Mori-Tanaka homogenization and irreversible thermodynamics framework. Regarding the physical mechanism, water strengthens micro-crack propagation, which induces damage evolution during the pre- and post-stage, and weakens the elastic effective properties of rock matrix. After proposing a special calibration procedure for the determination of model parameters based on the laboratory compression tests, the proposed micromechanical-based model is verified by comparing the model predictions to the experimental results. The model effectively captures the mechanical behaviors of quasi-brittle rocks subjected to the weakening effects of water.
期刊介绍:
The International Journal of Mining Science and Technology, founded in 1990 as the Journal of China University of Mining and Technology, is a monthly English-language journal. It publishes original research papers and high-quality reviews that explore the latest advancements in theories, methodologies, and applications within the realm of mining sciences and technologies. The journal serves as an international exchange forum for readers and authors worldwide involved in mining sciences and technologies. All papers undergo a peer-review process and meticulous editing by specialists and authorities, with the entire submission-to-publication process conducted electronically.