磷脂酰丝氨酸靶向双(锌-二羟基胺)法尼醇抑制癌细胞产生 ATP,克服多药耐药性

Wei Huang , Xuan Nie , Xiao-Hong Zhou , Lei Qiao , Hong-Jie Gao , Jing Zang , Long-Kang Yu , Long-Hai Wang , Ye-Zi You
{"title":"磷脂酰丝氨酸靶向双(锌-二羟基胺)法尼醇抑制癌细胞产生 ATP,克服多药耐药性","authors":"Wei Huang ,&nbsp;Xuan Nie ,&nbsp;Xiao-Hong Zhou ,&nbsp;Lei Qiao ,&nbsp;Hong-Jie Gao ,&nbsp;Jing Zang ,&nbsp;Long-Kang Yu ,&nbsp;Long-Hai Wang ,&nbsp;Ye-Zi You","doi":"10.1016/j.supmat.2024.100068","DOIUrl":null,"url":null,"abstract":"<div><p>Multidrug resistance significantly impedes the efficacy of cancer chemotherapy. Resistance often arises from the reduced cellular uptake of chemotherapeutic drugs, a process crucial for their cytotoxic effects. This reduction is frequently due to transmembrane efflux pumps powered by ATP from mitochondria and the cytoplasmic matrix, leading to lower intracellular concentrations of these drugs. This study introduces an amphiphilic molecule, bis(zinc-dipicolylamine) farnesol (Bis-ZnDPA), which targets phosphatidylserine (PS) – a negatively charged phospholipid prominently displayed on the outer leaflet of cancer cell plasma membranes. Integrating the hydrophobic segment of Bis-ZnDPA into the plasma membrane disrupts its integrity, potentially leading to hole formation and facilitating the uptake of chemotherapeutic drugs. Furthermore, the binding of Bis-ZnDPA to phosphatidylserine inhibits ATP production caused by Ca<sup>2+</sup> influx and deregulation of the phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) signaling pathway, reducing the efflux of drugs from cells. The results indicate the potent synergistic effect of Bis-ZnDPA with chemotherapeutic agents, suggesting that targeting PS is a viable strategy for overcoming multidrug resistance in cancer chemotherapy.</p></div>","PeriodicalId":101187,"journal":{"name":"Supramolecular Materials","volume":"3 ","pages":"Article 100068"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667240524000060/pdfft?md5=9e33a692665c2f861924388c7f5e6efd&pid=1-s2.0-S2667240524000060-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Phosphatidylserine-targeting bis(zinc-dipicolylamine) farnesol inhibits ATP production in cancer cells to overcome multidrug resistance\",\"authors\":\"Wei Huang ,&nbsp;Xuan Nie ,&nbsp;Xiao-Hong Zhou ,&nbsp;Lei Qiao ,&nbsp;Hong-Jie Gao ,&nbsp;Jing Zang ,&nbsp;Long-Kang Yu ,&nbsp;Long-Hai Wang ,&nbsp;Ye-Zi You\",\"doi\":\"10.1016/j.supmat.2024.100068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Multidrug resistance significantly impedes the efficacy of cancer chemotherapy. Resistance often arises from the reduced cellular uptake of chemotherapeutic drugs, a process crucial for their cytotoxic effects. This reduction is frequently due to transmembrane efflux pumps powered by ATP from mitochondria and the cytoplasmic matrix, leading to lower intracellular concentrations of these drugs. This study introduces an amphiphilic molecule, bis(zinc-dipicolylamine) farnesol (Bis-ZnDPA), which targets phosphatidylserine (PS) – a negatively charged phospholipid prominently displayed on the outer leaflet of cancer cell plasma membranes. Integrating the hydrophobic segment of Bis-ZnDPA into the plasma membrane disrupts its integrity, potentially leading to hole formation and facilitating the uptake of chemotherapeutic drugs. Furthermore, the binding of Bis-ZnDPA to phosphatidylserine inhibits ATP production caused by Ca<sup>2+</sup> influx and deregulation of the phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) signaling pathway, reducing the efflux of drugs from cells. The results indicate the potent synergistic effect of Bis-ZnDPA with chemotherapeutic agents, suggesting that targeting PS is a viable strategy for overcoming multidrug resistance in cancer chemotherapy.</p></div>\",\"PeriodicalId\":101187,\"journal\":{\"name\":\"Supramolecular Materials\",\"volume\":\"3 \",\"pages\":\"Article 100068\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2667240524000060/pdfft?md5=9e33a692665c2f861924388c7f5e6efd&pid=1-s2.0-S2667240524000060-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Supramolecular Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667240524000060\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Supramolecular Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667240524000060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

多药耐药性严重影响了癌症化疗的疗效。产生耐药性的原因通常是细胞对化疗药物的吸收减少,而这一过程对化疗药物的细胞毒性作用至关重要。这种减少往往是由于线粒体和细胞质基质的 ATP 驱动跨膜外排泵,导致这些药物的细胞内浓度降低。本研究引入了一种两亲分子--双(锌-二二乙醇胺)法尼索尔(Bis-ZnDPA),它以磷脂酰丝氨酸(PS)为靶标--PS 是一种带负电荷的磷脂,在癌细胞质膜的外叶上表现突出。将 Bis-ZnDPA 的疏水片段整合到质膜中会破坏质膜的完整性,从而可能导致孔洞的形成并促进化疗药物的吸收。此外,Bis-ZnDPA 与磷脂酰丝氨酸的结合还能抑制因 Ca2+ 流入和磷脂酰肌醇 3 激酶/蛋白激酶 B(PI3K/AKT)信号通路失调而产生的 ATP,从而减少药物从细胞中的外流。研究结果表明,Bis-ZnDPA 与化疗药物有很强的协同作用,这表明以 PS 为靶点是克服癌症化疗中多药耐药性的一种可行策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Phosphatidylserine-targeting bis(zinc-dipicolylamine) farnesol inhibits ATP production in cancer cells to overcome multidrug resistance

Multidrug resistance significantly impedes the efficacy of cancer chemotherapy. Resistance often arises from the reduced cellular uptake of chemotherapeutic drugs, a process crucial for their cytotoxic effects. This reduction is frequently due to transmembrane efflux pumps powered by ATP from mitochondria and the cytoplasmic matrix, leading to lower intracellular concentrations of these drugs. This study introduces an amphiphilic molecule, bis(zinc-dipicolylamine) farnesol (Bis-ZnDPA), which targets phosphatidylserine (PS) – a negatively charged phospholipid prominently displayed on the outer leaflet of cancer cell plasma membranes. Integrating the hydrophobic segment of Bis-ZnDPA into the plasma membrane disrupts its integrity, potentially leading to hole formation and facilitating the uptake of chemotherapeutic drugs. Furthermore, the binding of Bis-ZnDPA to phosphatidylserine inhibits ATP production caused by Ca2+ influx and deregulation of the phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) signaling pathway, reducing the efflux of drugs from cells. The results indicate the potent synergistic effect of Bis-ZnDPA with chemotherapeutic agents, suggesting that targeting PS is a viable strategy for overcoming multidrug resistance in cancer chemotherapy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.70
自引率
0.00%
发文量
0
期刊最新文献
Advancements in active filler-contained polymer solid-state electrolytes for lithium-metal batteries: A concise review Engineering chiral mesoporous silica nanoparticles: Template design and structural control for advanced applications Piezoelectric-triboelectric hybrid nanogenerator based on tough, stretchable BaTiO3 doped antibacterial hydrogel for self-powered sensors Supramolecular ethanol-water clusters in alcoholic beverages: Review on 2D correlation fluorescence and NMR spectral characterizations Anti-aging and anti-inflammatory fulfilled through the delivery of supramolecular bakuchiol in ionic liquid
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1