{"title":"跨加密货币回报的可预测性","authors":"Li Guo , Bo Sang , Jun Tu , Yu Wang","doi":"10.1016/j.jedc.2024.104863","DOIUrl":null,"url":null,"abstract":"<div><p>Using data from <em>Binance</em>, we find strong evidence of cross-cryptocurrency return predictability. The lagged returns of other cryptocurrencies serve as significant predictors of focal cryptocurrencies. The results are robust across various methods, including the adaptive LASSO and principal component analysis. Furthermore, a long-short portfolio formed on the past returns of cryptocurrencies can generate a sizable return out-of-sample after accounting for transaction costs. Overall, our findings corroborate cross-cryptocurrency return predictability and are consistent with the spillover effect mechanism, where common shocks among cryptocurrencies coupled with the limited attention of investors lead to slow information diffusion across coins.</p></div>","PeriodicalId":48314,"journal":{"name":"Journal of Economic Dynamics & Control","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cross-cryptocurrency return predictability\",\"authors\":\"Li Guo , Bo Sang , Jun Tu , Yu Wang\",\"doi\":\"10.1016/j.jedc.2024.104863\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Using data from <em>Binance</em>, we find strong evidence of cross-cryptocurrency return predictability. The lagged returns of other cryptocurrencies serve as significant predictors of focal cryptocurrencies. The results are robust across various methods, including the adaptive LASSO and principal component analysis. Furthermore, a long-short portfolio formed on the past returns of cryptocurrencies can generate a sizable return out-of-sample after accounting for transaction costs. Overall, our findings corroborate cross-cryptocurrency return predictability and are consistent with the spillover effect mechanism, where common shocks among cryptocurrencies coupled with the limited attention of investors lead to slow information diffusion across coins.</p></div>\",\"PeriodicalId\":48314,\"journal\":{\"name\":\"Journal of Economic Dynamics & Control\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Economic Dynamics & Control\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165188924000551\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Economic Dynamics & Control","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165188924000551","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
Using data from Binance, we find strong evidence of cross-cryptocurrency return predictability. The lagged returns of other cryptocurrencies serve as significant predictors of focal cryptocurrencies. The results are robust across various methods, including the adaptive LASSO and principal component analysis. Furthermore, a long-short portfolio formed on the past returns of cryptocurrencies can generate a sizable return out-of-sample after accounting for transaction costs. Overall, our findings corroborate cross-cryptocurrency return predictability and are consistent with the spillover effect mechanism, where common shocks among cryptocurrencies coupled with the limited attention of investors lead to slow information diffusion across coins.
期刊介绍:
The journal provides an outlet for publication of research concerning all theoretical and empirical aspects of economic dynamics and control as well as the development and use of computational methods in economics and finance. Contributions regarding computational methods may include, but are not restricted to, artificial intelligence, databases, decision support systems, genetic algorithms, modelling languages, neural networks, numerical algorithms for optimization, control and equilibria, parallel computing and qualitative reasoning.