Wanda Putra Fauzi, Rian Kurniawan, S. Sudiono, Niko Prasetyo, A. Syoufian
{"title":"使用 Cu-N 掺杂 ZrTiO4 复合材料作为高性能光催化剂在可见光照射下光降解苯酚","authors":"Wanda Putra Fauzi, Rian Kurniawan, S. Sudiono, Niko Prasetyo, A. Syoufian","doi":"10.22146/ijc.90365","DOIUrl":null,"url":null,"abstract":"Codoping of nitrogen and copper into zirconium titanate composite (Cu-N-codoped ZrTiO4) was carried out through a sol-gel process. This study aimed to investigate the effect of copper and nitrogen dopants on the photocatalytic activity of ZrTiO4 composite in degrading phenol. To prepare the composite, an aqueous suspension of zirconia (ZrO2) alongside a fixed amount of urea and various amount of copper sulfate was added dropwise into diluted titanium(IV) tetraisopropoxide (TTIP) in ethanol. The composites were calcined at temperatures of 500, 700, and 900 °C. Fourier-transform infrared spectrophotometry (FTIR), X-ray diffraction (XRD), scanning electron microscopy with energy dispersive X-ray (SEM-EDX) mapping, and specular reflectance UV-visible spectrophotometry (SR UV-vis) were used for their characterization of composite. The photocatalytic activity was evaluated by adding the composite into a 10 mg L−1 phenol solution for various irradiation time spans. The remaining concentration of phenol solution was determined by absorption at 269 nm. Cu-N-codoped ZrTiO4 composite containing 5% Cu calcined at 500 °C demonstrated the highest observed rate constant and a significant band gap decrease from 3.13 to 2.68 eV.","PeriodicalId":13515,"journal":{"name":"Indonesian Journal of Chemistry","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Photodegradation of Phenol under Visible Light Irradiation Using Cu-N-codoped ZrTiO4 Composite as a High-Performance Photocatalyst\",\"authors\":\"Wanda Putra Fauzi, Rian Kurniawan, S. Sudiono, Niko Prasetyo, A. Syoufian\",\"doi\":\"10.22146/ijc.90365\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Codoping of nitrogen and copper into zirconium titanate composite (Cu-N-codoped ZrTiO4) was carried out through a sol-gel process. This study aimed to investigate the effect of copper and nitrogen dopants on the photocatalytic activity of ZrTiO4 composite in degrading phenol. To prepare the composite, an aqueous suspension of zirconia (ZrO2) alongside a fixed amount of urea and various amount of copper sulfate was added dropwise into diluted titanium(IV) tetraisopropoxide (TTIP) in ethanol. The composites were calcined at temperatures of 500, 700, and 900 °C. Fourier-transform infrared spectrophotometry (FTIR), X-ray diffraction (XRD), scanning electron microscopy with energy dispersive X-ray (SEM-EDX) mapping, and specular reflectance UV-visible spectrophotometry (SR UV-vis) were used for their characterization of composite. The photocatalytic activity was evaluated by adding the composite into a 10 mg L−1 phenol solution for various irradiation time spans. The remaining concentration of phenol solution was determined by absorption at 269 nm. Cu-N-codoped ZrTiO4 composite containing 5% Cu calcined at 500 °C demonstrated the highest observed rate constant and a significant band gap decrease from 3.13 to 2.68 eV.\",\"PeriodicalId\":13515,\"journal\":{\"name\":\"Indonesian Journal of Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indonesian Journal of Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22146/ijc.90365\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indonesian Journal of Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22146/ijc.90365","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
通过溶胶-凝胶工艺在钛酸锆复合材料(Cu-N-codoped ZrTiO4)中掺入氮和铜。本研究旨在探讨铜和氮掺杂剂对 ZrTiO4 复合材料降解苯酚的光催化活性的影响。为了制备这种复合材料,将氧化锆(ZrO2)的水悬浮液与一定量的尿素和不同量的硫酸铜一起滴加到乙醇中稀释的四(IV)异丙醇钛(TTIP)中。复合材料分别在 500、700 和 900 °C 的温度下煅烧。复合材料的表征采用了傅立叶变换红外分光光度法(FTIR)、X 射线衍射法(XRD)、扫描电子显微镜与能量色散 X 射线(SEM-EDX)图谱以及镜面反射紫外可见分光光度法(SR UV-vis)。在 10 mg L-1 苯酚溶液中加入该复合材料,在不同的辐照时间跨度下进行光催化活性评估。苯酚溶液的剩余浓度通过 269 纳米波长的吸收率来测定。在 500 °C 煅烧的含 5% Cu 的 C-N 掺杂 ZrTiO4 复合材料的速率常数最高,带隙从 3.13 eV 显著降至 2.68 eV。
Photodegradation of Phenol under Visible Light Irradiation Using Cu-N-codoped ZrTiO4 Composite as a High-Performance Photocatalyst
Codoping of nitrogen and copper into zirconium titanate composite (Cu-N-codoped ZrTiO4) was carried out through a sol-gel process. This study aimed to investigate the effect of copper and nitrogen dopants on the photocatalytic activity of ZrTiO4 composite in degrading phenol. To prepare the composite, an aqueous suspension of zirconia (ZrO2) alongside a fixed amount of urea and various amount of copper sulfate was added dropwise into diluted titanium(IV) tetraisopropoxide (TTIP) in ethanol. The composites were calcined at temperatures of 500, 700, and 900 °C. Fourier-transform infrared spectrophotometry (FTIR), X-ray diffraction (XRD), scanning electron microscopy with energy dispersive X-ray (SEM-EDX) mapping, and specular reflectance UV-visible spectrophotometry (SR UV-vis) were used for their characterization of composite. The photocatalytic activity was evaluated by adding the composite into a 10 mg L−1 phenol solution for various irradiation time spans. The remaining concentration of phenol solution was determined by absorption at 269 nm. Cu-N-codoped ZrTiO4 composite containing 5% Cu calcined at 500 °C demonstrated the highest observed rate constant and a significant band gap decrease from 3.13 to 2.68 eV.
期刊介绍:
Indonesian Journal of Chemistry is a peer-reviewed, open access journal that publishes original research articles, review articles, as well as short communication in all areas of chemistry, including educational chemistry, applied chemistry, and chemical engineering.