{"title":"通过知识转移实现无人机控制任务变化下的高效深度强化学习","authors":"Sooyoung Jang, Hyung-Il Kim","doi":"10.1016/j.icte.2024.04.002","DOIUrl":null,"url":null,"abstract":"<div><p>Despite the growing interest in using deep reinforcement learning (DRL) for drone control, several challenges remain to be addressed, including issues with generalization across task variations and agent training (which requires significant computational power and time). When the agent’s input changes owing to the drone’s sensors or mission variations, significant retraining overhead is required to handle the changes in the input data pattern and the neural network architecture to accommodate the input data. These difficulties severely limit their applicability in dynamic real-world environments. In this paper, we propose an efficient DRL method that leverages the knowledge of the source agent to accelerate the training of the target agent under task variations. The proposed method consists of three phases: collecting training data for the target agent using the source agent, supervised pre-training of the target agent, and DRL-based fine-tuning. Experimental validation demonstrated a remarkable reduction in the training time (up to 94.29%), suggesting a potential avenue for the successful and efficient application of DRL in drone control.</p></div>","PeriodicalId":48526,"journal":{"name":"ICT Express","volume":"10 3","pages":"Pages 576-582"},"PeriodicalIF":4.1000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S240595952400033X/pdfft?md5=7d370e1bd566b1fe70dbc9a76bf4c077&pid=1-s2.0-S240595952400033X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Efficient deep reinforcement learning under task variations via knowledge transfer for drone control\",\"authors\":\"Sooyoung Jang, Hyung-Il Kim\",\"doi\":\"10.1016/j.icte.2024.04.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Despite the growing interest in using deep reinforcement learning (DRL) for drone control, several challenges remain to be addressed, including issues with generalization across task variations and agent training (which requires significant computational power and time). When the agent’s input changes owing to the drone’s sensors or mission variations, significant retraining overhead is required to handle the changes in the input data pattern and the neural network architecture to accommodate the input data. These difficulties severely limit their applicability in dynamic real-world environments. In this paper, we propose an efficient DRL method that leverages the knowledge of the source agent to accelerate the training of the target agent under task variations. The proposed method consists of three phases: collecting training data for the target agent using the source agent, supervised pre-training of the target agent, and DRL-based fine-tuning. Experimental validation demonstrated a remarkable reduction in the training time (up to 94.29%), suggesting a potential avenue for the successful and efficient application of DRL in drone control.</p></div>\",\"PeriodicalId\":48526,\"journal\":{\"name\":\"ICT Express\",\"volume\":\"10 3\",\"pages\":\"Pages 576-582\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S240595952400033X/pdfft?md5=7d370e1bd566b1fe70dbc9a76bf4c077&pid=1-s2.0-S240595952400033X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICT Express\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S240595952400033X\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICT Express","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S240595952400033X","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Efficient deep reinforcement learning under task variations via knowledge transfer for drone control
Despite the growing interest in using deep reinforcement learning (DRL) for drone control, several challenges remain to be addressed, including issues with generalization across task variations and agent training (which requires significant computational power and time). When the agent’s input changes owing to the drone’s sensors or mission variations, significant retraining overhead is required to handle the changes in the input data pattern and the neural network architecture to accommodate the input data. These difficulties severely limit their applicability in dynamic real-world environments. In this paper, we propose an efficient DRL method that leverages the knowledge of the source agent to accelerate the training of the target agent under task variations. The proposed method consists of three phases: collecting training data for the target agent using the source agent, supervised pre-training of the target agent, and DRL-based fine-tuning. Experimental validation demonstrated a remarkable reduction in the training time (up to 94.29%), suggesting a potential avenue for the successful and efficient application of DRL in drone control.
期刊介绍:
The ICT Express journal published by the Korean Institute of Communications and Information Sciences (KICS) is an international, peer-reviewed research publication covering all aspects of information and communication technology. The journal aims to publish research that helps advance the theoretical and practical understanding of ICT convergence, platform technologies, communication networks, and device technologies. The technology advancement in information and communication technology (ICT) sector enables portable devices to be always connected while supporting high data rate, resulting in the recent popularity of smartphones that have a considerable impact in economic and social development.