Hongwei Huang , Chen Wu , Mingliang Zhou , Jiayao Chen , Tianze Han , Le Zhang
{"title":"通过树状增强的天真贝叶斯网络,利用不完整的多源数据集预测隧道工作面的岩体质量","authors":"Hongwei Huang , Chen Wu , Mingliang Zhou , Jiayao Chen , Tianze Han , Le Zhang","doi":"10.1016/j.ijmst.2024.03.003","DOIUrl":null,"url":null,"abstract":"<div><p>Rock mass quality serves as a vital index for predicting the stability and safety status of rock tunnel faces. In tunneling practice, the rock mass quality is often assessed via a combination of qualitative and quantitative parameters. However, due to the harsh on-site construction conditions, it is rather difficult to obtain some of the evaluation parameters which are essential for the rock mass quality prediction. In this study, a novel improved Swin Transformer is proposed to detect, segment, and quantify rock mass characteristic parameters such as water leakage, fractures, weak interlayers. The site experiment results demonstrate that the improved Swin Transformer achieves optimal segmentation results and achieving accuracies of 92%, 81%, and 86% for water leakage, fractures, and weak interlayers, respectively. A multi-source rock tunnel face characteristic (RTFC) dataset includes 11 parameters for predicting rock mass quality is established. Considering the limitations in predictive performance of incomplete evaluation parameters exist in this dataset, a novel tree-augmented naive Bayesian network (BN) is proposed to address the challenge of the incomplete dataset and achieved a prediction accuracy of 88%. In comparison with other commonly used Machine Learning models the proposed BN-based approach proved an improved performance on predicting the rock mass quality with the incomplete dataset. By utilizing the established BN, a further sensitivity analysis is conducted to quantitatively evaluate the importance of the various parameters, results indicate that the rock strength and fractures parameter exert the most significant influence on rock mass quality.</p></div>","PeriodicalId":48625,"journal":{"name":"International Journal of Mining Science and Technology","volume":"34 3","pages":"Pages 323-337"},"PeriodicalIF":11.7000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S209526862400034X/pdfft?md5=0aad921bfeeb873fef5ccd009428ec41&pid=1-s2.0-S209526862400034X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Rock mass quality prediction on tunnel faces with incomplete multi-source dataset via tree-augmented naive Bayesian network\",\"authors\":\"Hongwei Huang , Chen Wu , Mingliang Zhou , Jiayao Chen , Tianze Han , Le Zhang\",\"doi\":\"10.1016/j.ijmst.2024.03.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Rock mass quality serves as a vital index for predicting the stability and safety status of rock tunnel faces. In tunneling practice, the rock mass quality is often assessed via a combination of qualitative and quantitative parameters. However, due to the harsh on-site construction conditions, it is rather difficult to obtain some of the evaluation parameters which are essential for the rock mass quality prediction. In this study, a novel improved Swin Transformer is proposed to detect, segment, and quantify rock mass characteristic parameters such as water leakage, fractures, weak interlayers. The site experiment results demonstrate that the improved Swin Transformer achieves optimal segmentation results and achieving accuracies of 92%, 81%, and 86% for water leakage, fractures, and weak interlayers, respectively. A multi-source rock tunnel face characteristic (RTFC) dataset includes 11 parameters for predicting rock mass quality is established. Considering the limitations in predictive performance of incomplete evaluation parameters exist in this dataset, a novel tree-augmented naive Bayesian network (BN) is proposed to address the challenge of the incomplete dataset and achieved a prediction accuracy of 88%. In comparison with other commonly used Machine Learning models the proposed BN-based approach proved an improved performance on predicting the rock mass quality with the incomplete dataset. By utilizing the established BN, a further sensitivity analysis is conducted to quantitatively evaluate the importance of the various parameters, results indicate that the rock strength and fractures parameter exert the most significant influence on rock mass quality.</p></div>\",\"PeriodicalId\":48625,\"journal\":{\"name\":\"International Journal of Mining Science and Technology\",\"volume\":\"34 3\",\"pages\":\"Pages 323-337\"},\"PeriodicalIF\":11.7000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S209526862400034X/pdfft?md5=0aad921bfeeb873fef5ccd009428ec41&pid=1-s2.0-S209526862400034X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mining Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S209526862400034X\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MINING & MINERAL PROCESSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mining Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S209526862400034X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MINING & MINERAL PROCESSING","Score":null,"Total":0}
Rock mass quality prediction on tunnel faces with incomplete multi-source dataset via tree-augmented naive Bayesian network
Rock mass quality serves as a vital index for predicting the stability and safety status of rock tunnel faces. In tunneling practice, the rock mass quality is often assessed via a combination of qualitative and quantitative parameters. However, due to the harsh on-site construction conditions, it is rather difficult to obtain some of the evaluation parameters which are essential for the rock mass quality prediction. In this study, a novel improved Swin Transformer is proposed to detect, segment, and quantify rock mass characteristic parameters such as water leakage, fractures, weak interlayers. The site experiment results demonstrate that the improved Swin Transformer achieves optimal segmentation results and achieving accuracies of 92%, 81%, and 86% for water leakage, fractures, and weak interlayers, respectively. A multi-source rock tunnel face characteristic (RTFC) dataset includes 11 parameters for predicting rock mass quality is established. Considering the limitations in predictive performance of incomplete evaluation parameters exist in this dataset, a novel tree-augmented naive Bayesian network (BN) is proposed to address the challenge of the incomplete dataset and achieved a prediction accuracy of 88%. In comparison with other commonly used Machine Learning models the proposed BN-based approach proved an improved performance on predicting the rock mass quality with the incomplete dataset. By utilizing the established BN, a further sensitivity analysis is conducted to quantitatively evaluate the importance of the various parameters, results indicate that the rock strength and fractures parameter exert the most significant influence on rock mass quality.
期刊介绍:
The International Journal of Mining Science and Technology, founded in 1990 as the Journal of China University of Mining and Technology, is a monthly English-language journal. It publishes original research papers and high-quality reviews that explore the latest advancements in theories, methodologies, and applications within the realm of mining sciences and technologies. The journal serves as an international exchange forum for readers and authors worldwide involved in mining sciences and technologies. All papers undergo a peer-review process and meticulous editing by specialists and authorities, with the entire submission-to-publication process conducted electronically.