宿主诱导的效应基因 AGLIP1 基因沉默增强了水稻对根瘤菌 AG1-IA 的抗性

IF 5.6 2区 农林科学 Q1 AGRONOMY Rice Science Pub Date : 2024-07-01 DOI:10.1016/j.rsci.2024.04.005
{"title":"宿主诱导的效应基因 AGLIP1 基因沉默增强了水稻对根瘤菌 AG1-IA 的抗性","authors":"","doi":"10.1016/j.rsci.2024.04.005","DOIUrl":null,"url":null,"abstract":"<div><p>Rice sheath blight, caused by <em>Rhizoctonia solani</em> AG1-IA, is a major disease in rice-growing areas worldwide. Effectors of phytopathogenic fungi play important roles during the infection process of fungal pathogens onto their host plants. However, the molecular mechanisms by which <em>R</em>. <em>solani</em> effectors regulate rice immunity are not well understood. Through prediction, 78 candidate effector molecules were identified. Using the tobacco rattle virus-host induced gene silencing (TRV-HIGS) system, 45 RNAi constructs of effector genes were infiltrated into <em>Nicotiana benthamiana</em> leaves. The results revealed that eight of these constructs resulted in a significant reduction in necrosis caused by infection with the AG1-IA strain GD-118. Additionally, stable rice transformants carrying the double-stranded RNA construct for one of the effector genes, <em>AGLIP1</em>, were generated to further verify the function of this gene. The suppression of the <em>AGLIP1</em> gene increased the resistance of both <em>N. benthamiana</em> and rice against GD-118, and also affected the growth rate of GD-118, indicating that <em>AGLIP1</em> is a key pathogenic factor. Small RNA sequencing showed that the HIGS vectors were processed into siRNAs within the plants and then translocated to the fungi, leading to the silencing of the target genes. As a result, <em>AGLIP1</em> might be an excellent candidate for HIGS, thereby enhancing crop resistance against the pathogen and contributing to the control of <em>R. solani</em> infection.</p></div>","PeriodicalId":56069,"journal":{"name":"Rice Science","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1672630824000362/pdfft?md5=87fedcd4820e98ceb099d407eec405ae&pid=1-s2.0-S1672630824000362-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Host-Induced Gene Silencing of Effector AGLIP1 Enhanced Resistance of Rice to Rhizoctonia solani AG1-IA\",\"authors\":\"\",\"doi\":\"10.1016/j.rsci.2024.04.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Rice sheath blight, caused by <em>Rhizoctonia solani</em> AG1-IA, is a major disease in rice-growing areas worldwide. Effectors of phytopathogenic fungi play important roles during the infection process of fungal pathogens onto their host plants. However, the molecular mechanisms by which <em>R</em>. <em>solani</em> effectors regulate rice immunity are not well understood. Through prediction, 78 candidate effector molecules were identified. Using the tobacco rattle virus-host induced gene silencing (TRV-HIGS) system, 45 RNAi constructs of effector genes were infiltrated into <em>Nicotiana benthamiana</em> leaves. The results revealed that eight of these constructs resulted in a significant reduction in necrosis caused by infection with the AG1-IA strain GD-118. Additionally, stable rice transformants carrying the double-stranded RNA construct for one of the effector genes, <em>AGLIP1</em>, were generated to further verify the function of this gene. The suppression of the <em>AGLIP1</em> gene increased the resistance of both <em>N. benthamiana</em> and rice against GD-118, and also affected the growth rate of GD-118, indicating that <em>AGLIP1</em> is a key pathogenic factor. Small RNA sequencing showed that the HIGS vectors were processed into siRNAs within the plants and then translocated to the fungi, leading to the silencing of the target genes. As a result, <em>AGLIP1</em> might be an excellent candidate for HIGS, thereby enhancing crop resistance against the pathogen and contributing to the control of <em>R. solani</em> infection.</p></div>\",\"PeriodicalId\":56069,\"journal\":{\"name\":\"Rice Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1672630824000362/pdfft?md5=87fedcd4820e98ceb099d407eec405ae&pid=1-s2.0-S1672630824000362-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rice Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1672630824000362\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rice Science","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1672630824000362","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

摘要

由根瘤菌 AG1-IA 引起的水稻鞘枯病是全球水稻种植区的主要病害。植物病原真菌的效应物在真菌病原体感染寄主植物的过程中发挥着重要作用。然而,R. solani效应子调控水稻免疫的分子机制尚不十分清楚。通过预测,确定了 78 个候选效应分子。利用烟草鼠疫病毒-宿主诱导基因沉默(TRV-HIGS)系统,将 45 个效应基因的 RNAi 构建体渗入到烟草鼠疫病毒-宿主诱导基因沉默(TRV-HIGS)系统中。结果显示,其中 8 个构建体显著减少了 AG1-IA 株 GD-118 感染造成的坏死。此外,为了进一步验证其中一个效应基因 AGLIP1 的功能,还生成了携带双链 RNA 构建物的稳定水稻转化体。抑制 AGLIP1 基因可提高 N. benthamiana 和水稻对 GD-118 的抗性,同时也会影响 GD-118 的生长速度,这表明 AGLIP1 是一个关键的致病因子。小 RNA 测序表明,HIGS 载体在植物体内被加工成 siRNA,然后转运到真菌体内,导致目标基因沉默。因此,AGLIP1 可能是 HIGS 的极佳候选基因,从而增强作物对病原体的抗性,有助于控制 R. solani 的感染。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Host-Induced Gene Silencing of Effector AGLIP1 Enhanced Resistance of Rice to Rhizoctonia solani AG1-IA

Rice sheath blight, caused by Rhizoctonia solani AG1-IA, is a major disease in rice-growing areas worldwide. Effectors of phytopathogenic fungi play important roles during the infection process of fungal pathogens onto their host plants. However, the molecular mechanisms by which R. solani effectors regulate rice immunity are not well understood. Through prediction, 78 candidate effector molecules were identified. Using the tobacco rattle virus-host induced gene silencing (TRV-HIGS) system, 45 RNAi constructs of effector genes were infiltrated into Nicotiana benthamiana leaves. The results revealed that eight of these constructs resulted in a significant reduction in necrosis caused by infection with the AG1-IA strain GD-118. Additionally, stable rice transformants carrying the double-stranded RNA construct for one of the effector genes, AGLIP1, were generated to further verify the function of this gene. The suppression of the AGLIP1 gene increased the resistance of both N. benthamiana and rice against GD-118, and also affected the growth rate of GD-118, indicating that AGLIP1 is a key pathogenic factor. Small RNA sequencing showed that the HIGS vectors were processed into siRNAs within the plants and then translocated to the fungi, leading to the silencing of the target genes. As a result, AGLIP1 might be an excellent candidate for HIGS, thereby enhancing crop resistance against the pathogen and contributing to the control of R. solani infection.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Rice Science
Rice Science Agricultural and Biological Sciences-Agronomy and Crop Science
CiteScore
8.90
自引率
6.20%
发文量
55
审稿时长
40 weeks
期刊介绍: Rice Science is an international research journal sponsored by China National Rice Research Institute. It publishes original research papers, review articles, as well as short communications on all aspects of rice sciences in English language. Some of the topics that may be included in each issue are: breeding and genetics, biotechnology, germplasm resources, crop management, pest management, physiology, soil and fertilizer management, ecology, cereal chemistry and post-harvest processing.
期刊最新文献
Appropriate Supply of Ammonium Nitrogen and Ammonium Nitrate Reduces Cadmium Content in Rice Seedlings by Inhibiting Cadmium Uptake and Transport Development of Machine Vision-Based Algorithm for Counting and Discriminating Filled and Unfilled Paddy Rice in Overlapping Mode Biochar Decreases Soil Cadmium (Cd) Availability and Regulates Expression Levels of Cd Uptake/Transport-Related Genes to Reduce Cd Translocation in Rice Next Generation Nutrition: Genomic and Molecular Breeding Innovations for Iron and Zinc Biofortification in Rice Ameliorative Effects of Paclobutrazol via Physio-Biochemical and Molecular Manifestation in Rice under Water Deficit Stress
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1