关于使用混合减震器提高坠机事件中商用飞机乘客的安全性

IF 11.5 1区 工程技术 Q1 ENGINEERING, AEROSPACE Progress in Aerospace Sciences Pub Date : 2024-07-01 DOI:10.1016/j.paerosci.2024.101004
{"title":"关于使用混合减震器提高坠机事件中商用飞机乘客的安全性","authors":"","doi":"10.1016/j.paerosci.2024.101004","DOIUrl":null,"url":null,"abstract":"<div><p>the passive safety of aircraft passengers is such an important aspect in the design of aircraft structures as strength and fatigue concerns. The development of methods and devices to prevent passenger injuries is the subject of continuous efforts. The mission is to minimize stresses and accelerations on passengers during a crash. Over the years, studies on crash phenomena have been focused on experimental tests, using full-scale structures and Anthropomorphic Test Devices (ATDs) to assess the consequences of impact phenomena on the human body. However, due to the high costs of experimental campaigns and the difficulty of controlling all relevant parameters, the need of efficient numerical models capable of validating experimental data has increased. This is specifically relevant for tests on ATDs.</p><p>In the frame of this work, the side-impact of an aircraft passenger have been numerically investigated positioned on a window-side seat of an aluminium commercial aircraft fuselage a World SID-based dummy. An attempt to increase the aircraft crashworthiness was made placing in correspondence with the head and the shoulders of the dummy hybrid sandwich shock absorbers. In order to validate the considered dummy model, a lateral impact against a flat barrier has been carried out. The obtained numerical results have been cross-compared with literature experimental data. Then, the side-impact behaviour of the dummy within a fuselage section has been investigated, with the aim to verify the absorption capability of the shock absorbers and to quantify their effect on the safety of the dummy. The employment of the shock absorbers allowed to reduce the acceleration peaks experienced by the dummy's head up to 50%.</p></div>","PeriodicalId":54553,"journal":{"name":"Progress in Aerospace Sciences","volume":"148 ","pages":"Article 101004"},"PeriodicalIF":11.5000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0376042124000307/pdfft?md5=d5a2de844b81eaf35c10fe60bc4b9ddc&pid=1-s2.0-S0376042124000307-main.pdf","citationCount":"0","resultStr":"{\"title\":\"On the use of hybrid shock absorbers to increase safety of commercial aircraft passengers during a crash event\",\"authors\":\"\",\"doi\":\"10.1016/j.paerosci.2024.101004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>the passive safety of aircraft passengers is such an important aspect in the design of aircraft structures as strength and fatigue concerns. The development of methods and devices to prevent passenger injuries is the subject of continuous efforts. The mission is to minimize stresses and accelerations on passengers during a crash. Over the years, studies on crash phenomena have been focused on experimental tests, using full-scale structures and Anthropomorphic Test Devices (ATDs) to assess the consequences of impact phenomena on the human body. However, due to the high costs of experimental campaigns and the difficulty of controlling all relevant parameters, the need of efficient numerical models capable of validating experimental data has increased. This is specifically relevant for tests on ATDs.</p><p>In the frame of this work, the side-impact of an aircraft passenger have been numerically investigated positioned on a window-side seat of an aluminium commercial aircraft fuselage a World SID-based dummy. An attempt to increase the aircraft crashworthiness was made placing in correspondence with the head and the shoulders of the dummy hybrid sandwich shock absorbers. In order to validate the considered dummy model, a lateral impact against a flat barrier has been carried out. The obtained numerical results have been cross-compared with literature experimental data. Then, the side-impact behaviour of the dummy within a fuselage section has been investigated, with the aim to verify the absorption capability of the shock absorbers and to quantify their effect on the safety of the dummy. The employment of the shock absorbers allowed to reduce the acceleration peaks experienced by the dummy's head up to 50%.</p></div>\",\"PeriodicalId\":54553,\"journal\":{\"name\":\"Progress in Aerospace Sciences\",\"volume\":\"148 \",\"pages\":\"Article 101004\"},\"PeriodicalIF\":11.5000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0376042124000307/pdfft?md5=d5a2de844b81eaf35c10fe60bc4b9ddc&pid=1-s2.0-S0376042124000307-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Aerospace Sciences\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0376042124000307\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Aerospace Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0376042124000307","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

摘要

与强度和疲劳问题一样,飞机乘客的被动安全也是飞机结构设计的一个重要方面。防止乘客受伤的方法和装置的开发是持续努力的主题。其任务是最大限度地减少坠机时对乘客的应力和加速度。多年来,对撞击现象的研究主要集中在实验测试上,使用全尺寸结构和人体试验装置(ATD)来评估撞击现象对人体造成的后果。然而,由于实验活动成本高昂,且难以控制所有相关参数,因此越来越需要能够验证实验数据的高效数字模型。在这项工作中,我们通过数值方法研究了一名飞机乘客的侧面撞击情况,该乘客被安置在一架铝制商用飞机机身的靠窗座位上,并使用了基于世界 SID 的假人。为了提高飞机的耐撞性,我们在假人的头部和肩部安装了混合夹层减震器。为了验证所考虑的假人模型,对平面障碍物进行了横向撞击。获得的数值结果与文献实验数据进行了交叉比较。然后,研究了假人在机身部分内的侧面撞击行为,目的是验证减震器的吸收能力,并量化其对假人安全的影响。使用减震器可将假人头部所经历的加速度峰值降低 50%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On the use of hybrid shock absorbers to increase safety of commercial aircraft passengers during a crash event

the passive safety of aircraft passengers is such an important aspect in the design of aircraft structures as strength and fatigue concerns. The development of methods and devices to prevent passenger injuries is the subject of continuous efforts. The mission is to minimize stresses and accelerations on passengers during a crash. Over the years, studies on crash phenomena have been focused on experimental tests, using full-scale structures and Anthropomorphic Test Devices (ATDs) to assess the consequences of impact phenomena on the human body. However, due to the high costs of experimental campaigns and the difficulty of controlling all relevant parameters, the need of efficient numerical models capable of validating experimental data has increased. This is specifically relevant for tests on ATDs.

In the frame of this work, the side-impact of an aircraft passenger have been numerically investigated positioned on a window-side seat of an aluminium commercial aircraft fuselage a World SID-based dummy. An attempt to increase the aircraft crashworthiness was made placing in correspondence with the head and the shoulders of the dummy hybrid sandwich shock absorbers. In order to validate the considered dummy model, a lateral impact against a flat barrier has been carried out. The obtained numerical results have been cross-compared with literature experimental data. Then, the side-impact behaviour of the dummy within a fuselage section has been investigated, with the aim to verify the absorption capability of the shock absorbers and to quantify their effect on the safety of the dummy. The employment of the shock absorbers allowed to reduce the acceleration peaks experienced by the dummy's head up to 50%.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Progress in Aerospace Sciences
Progress in Aerospace Sciences 工程技术-工程:宇航
CiteScore
20.20
自引率
3.10%
发文量
41
审稿时长
5 months
期刊介绍: "Progress in Aerospace Sciences" is a prestigious international review journal focusing on research in aerospace sciences and its applications in research organizations, industry, and universities. The journal aims to appeal to a wide range of readers and provide valuable information. The primary content of the journal consists of specially commissioned review articles. These articles serve to collate the latest advancements in the expansive field of aerospace sciences. Unlike other journals, there are no restrictions on the length of papers. Authors are encouraged to furnish specialist readers with a clear and concise summary of recent work, while also providing enough detail for general aerospace readers to stay updated on developments in fields beyond their own expertise.
期刊最新文献
Compressible vortex loops and their interactions A comprehensive review of lunar-based manufacturing and construction Space sails for achieving major space exploration goals: Historical review and future outlook Editorial Board Responsive tolerant control: An approach to extend adaptability of launch vehicles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1