在确定性和随机环境中带有迁移和随机传播的传染病流行模型

Mohammed Salman , Prativa Sahoo , Anushaya Mohapatra , Sanjay Kumar Mohanty , Libin Rong
{"title":"在确定性和随机环境中带有迁移和随机传播的传染病流行模型","authors":"Mohammed Salman ,&nbsp;Prativa Sahoo ,&nbsp;Anushaya Mohapatra ,&nbsp;Sanjay Kumar Mohanty ,&nbsp;Libin Rong","doi":"10.1016/j.health.2024.100337","DOIUrl":null,"url":null,"abstract":"<div><p>Understanding population migration is essential for controlling highly infectious diseases. This paper studies the global dynamics of an infectious disease epidemic model incorporating population migration and a stochastic transmission rate. Our findings demonstrate that in deterministic and stochastic environments, the models exhibit global Lyapunov stability near the disease-free equilibrium point, determined by a threshold parameter. Furthermore, we analyze the effect of migration on infectious diseases. We discover that the number of infections and the peak value of the infection curve increase with a higher level of population migration. These results are supported by numerical illustrations that hold epidemiological relevance. Additionally, the disease-free equilibrium of the associated time delay model is linearly asymptotically stable, and the endemic equilibrium exhibits more bifurcation for larger time delay values.</p></div>","PeriodicalId":73222,"journal":{"name":"Healthcare analytics (New York, N.Y.)","volume":"5 ","pages":"Article 100337"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S277244252400039X/pdfft?md5=4fe7641c44b41f4923bebfb1b962f470&pid=1-s2.0-S277244252400039X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"An infectious disease epidemic model with migration and stochastic transmission in deterministic and stochastic environments\",\"authors\":\"Mohammed Salman ,&nbsp;Prativa Sahoo ,&nbsp;Anushaya Mohapatra ,&nbsp;Sanjay Kumar Mohanty ,&nbsp;Libin Rong\",\"doi\":\"10.1016/j.health.2024.100337\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Understanding population migration is essential for controlling highly infectious diseases. This paper studies the global dynamics of an infectious disease epidemic model incorporating population migration and a stochastic transmission rate. Our findings demonstrate that in deterministic and stochastic environments, the models exhibit global Lyapunov stability near the disease-free equilibrium point, determined by a threshold parameter. Furthermore, we analyze the effect of migration on infectious diseases. We discover that the number of infections and the peak value of the infection curve increase with a higher level of population migration. These results are supported by numerical illustrations that hold epidemiological relevance. Additionally, the disease-free equilibrium of the associated time delay model is linearly asymptotically stable, and the endemic equilibrium exhibits more bifurcation for larger time delay values.</p></div>\",\"PeriodicalId\":73222,\"journal\":{\"name\":\"Healthcare analytics (New York, N.Y.)\",\"volume\":\"5 \",\"pages\":\"Article 100337\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S277244252400039X/pdfft?md5=4fe7641c44b41f4923bebfb1b962f470&pid=1-s2.0-S277244252400039X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Healthcare analytics (New York, N.Y.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S277244252400039X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Healthcare analytics (New York, N.Y.)","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S277244252400039X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

了解人口迁移对控制高度传染性疾病至关重要。本文研究了包含人口迁移和随机传播率的传染病流行模型的全局动态。我们的研究结果表明,在确定性和随机环境中,模型在由阈值参数决定的无疾病平衡点附近表现出全局李亚普诺夫稳定性。此外,我们还分析了移民对传染病的影响。我们发现,随着人口迁移水平的提高,感染数量和感染曲线的峰值也会增加。这些结果得到了与流行病学相关的数字说明的支持。此外,相关时间延迟模型的无疾病均衡是线性渐近稳定的,而流行均衡在时间延迟值越大时越容易出现分叉。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An infectious disease epidemic model with migration and stochastic transmission in deterministic and stochastic environments

Understanding population migration is essential for controlling highly infectious diseases. This paper studies the global dynamics of an infectious disease epidemic model incorporating population migration and a stochastic transmission rate. Our findings demonstrate that in deterministic and stochastic environments, the models exhibit global Lyapunov stability near the disease-free equilibrium point, determined by a threshold parameter. Furthermore, we analyze the effect of migration on infectious diseases. We discover that the number of infections and the peak value of the infection curve increase with a higher level of population migration. These results are supported by numerical illustrations that hold epidemiological relevance. Additionally, the disease-free equilibrium of the associated time delay model is linearly asymptotically stable, and the endemic equilibrium exhibits more bifurcation for larger time delay values.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Healthcare analytics (New York, N.Y.)
Healthcare analytics (New York, N.Y.) Applied Mathematics, Modelling and Simulation, Nursing and Health Professions (General)
CiteScore
4.40
自引率
0.00%
发文量
0
审稿时长
79 days
期刊最新文献
Optimized early fusion of handcrafted and deep learning descriptors for voice pathology detection and classification A deep neural network model with spectral correlation function for electrocardiogram classification and diagnosis of atrial fibrillation An ensemble convolutional neural network model for brain stroke prediction using brain computed tomography images A hierarchical Bayesian approach for identifying socioeconomic factors influencing self-rated health in Japan An electrocardiogram signal classification using a hybrid machine learning and deep learning approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1