Philip Sedore , Alexandre Normandeau , Vittorio Maselli
{"title":"北极峡湾海底滑坡产生的环境控制因素:努勒维特巴芬岛彭尼尔通峡湾的启示","authors":"Philip Sedore , Alexandre Normandeau , Vittorio Maselli","doi":"10.1016/j.margeo.2024.107290","DOIUrl":null,"url":null,"abstract":"<div><p>High-latitude fjords are susceptible to hazardous subaerial and submarine mass movements such as rock avalanches and landslides. Geophysical surveys in the fjords of Baffin Island (Nunavut) have shown widespread evidence of submarine landslides, but their timing and triggers remain relatively unconstrained, limiting our ability to understand the environmental controls on the wide range of landslides occurring in high latitude fjords. Using bathymetric, sub-bottom, and sediment core data, this study seeks to generate a comprehensive understanding of the distribution, morphology, lithology, and timing of submarine landslides in Pangnirtung Fjord (SE Baffin Island, Nunavut). These results are used to evaluate the influence of different environmental controls on the generation of submarine landslides in Arctic fjords. We identified 180 near-surface submarine landslides, most of which are relatively small (∼ 0.13 km<sup>2</sup>), with elongated depletion zones and wide deposits dispersed along the basin floor of the fjord. Landslide ages, calculated from radiocarbon dating and <sup>210</sup>Pb/<sup>137</sup>Cs activities, indicate that 8 of the 11 dated landslides occurred in the last 200 years. Four types of environmental controls were identified, which are believed to have preconditioned or triggered the observed landslides: 1) 51% of landslides, by area, are associated with subaerial sources and extend offshore of debris flow channels and fans; 2) 23% are initiated in shallow-water (< 40 m), are non-subaerially influenced, and may have been triggered by nearshore processes and sea-ice loading; 3) 13% are located in deeper waters (>40 m) and associated with sills and moraines, suggesting they are older deposits associated with the retreat of the ice sheet in the fjord; and 4) 13% are offshore of river deltas, likely associated with delta progradation; they form the largest landslide deposits in the fjord. This research suggests that the main triggers for submarine landslides in high-latitude fjords are climatically influenced (rainfall, floods, subaerial debris flows, and sea ice loading). Consequently, the predicted increase in the frequency of subaerial debris flows and river floods due to anthropogenic climate change will likely result in an increase in the recurrence of these types of submarine landslides. Additional monitoring efforts will be then needed to fully evaluate how future climate will impact the submarine landslide hazard across the Arctic.</p></div>","PeriodicalId":18229,"journal":{"name":"Marine Geology","volume":"472 ","pages":"Article 107290"},"PeriodicalIF":2.6000,"publicationDate":"2024-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Environmental controls on the generation of submarine landslides in Arctic fjords: Insight from Pangnirtung Fjord, Baffin Island, Nunavut\",\"authors\":\"Philip Sedore , Alexandre Normandeau , Vittorio Maselli\",\"doi\":\"10.1016/j.margeo.2024.107290\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>High-latitude fjords are susceptible to hazardous subaerial and submarine mass movements such as rock avalanches and landslides. Geophysical surveys in the fjords of Baffin Island (Nunavut) have shown widespread evidence of submarine landslides, but their timing and triggers remain relatively unconstrained, limiting our ability to understand the environmental controls on the wide range of landslides occurring in high latitude fjords. Using bathymetric, sub-bottom, and sediment core data, this study seeks to generate a comprehensive understanding of the distribution, morphology, lithology, and timing of submarine landslides in Pangnirtung Fjord (SE Baffin Island, Nunavut). These results are used to evaluate the influence of different environmental controls on the generation of submarine landslides in Arctic fjords. We identified 180 near-surface submarine landslides, most of which are relatively small (∼ 0.13 km<sup>2</sup>), with elongated depletion zones and wide deposits dispersed along the basin floor of the fjord. Landslide ages, calculated from radiocarbon dating and <sup>210</sup>Pb/<sup>137</sup>Cs activities, indicate that 8 of the 11 dated landslides occurred in the last 200 years. Four types of environmental controls were identified, which are believed to have preconditioned or triggered the observed landslides: 1) 51% of landslides, by area, are associated with subaerial sources and extend offshore of debris flow channels and fans; 2) 23% are initiated in shallow-water (< 40 m), are non-subaerially influenced, and may have been triggered by nearshore processes and sea-ice loading; 3) 13% are located in deeper waters (>40 m) and associated with sills and moraines, suggesting they are older deposits associated with the retreat of the ice sheet in the fjord; and 4) 13% are offshore of river deltas, likely associated with delta progradation; they form the largest landslide deposits in the fjord. This research suggests that the main triggers for submarine landslides in high-latitude fjords are climatically influenced (rainfall, floods, subaerial debris flows, and sea ice loading). Consequently, the predicted increase in the frequency of subaerial debris flows and river floods due to anthropogenic climate change will likely result in an increase in the recurrence of these types of submarine landslides. Additional monitoring efforts will be then needed to fully evaluate how future climate will impact the submarine landslide hazard across the Arctic.</p></div>\",\"PeriodicalId\":18229,\"journal\":{\"name\":\"Marine Geology\",\"volume\":\"472 \",\"pages\":\"Article 107290\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Marine Geology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0025322724000744\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Geology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025322724000744","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Environmental controls on the generation of submarine landslides in Arctic fjords: Insight from Pangnirtung Fjord, Baffin Island, Nunavut
High-latitude fjords are susceptible to hazardous subaerial and submarine mass movements such as rock avalanches and landslides. Geophysical surveys in the fjords of Baffin Island (Nunavut) have shown widespread evidence of submarine landslides, but their timing and triggers remain relatively unconstrained, limiting our ability to understand the environmental controls on the wide range of landslides occurring in high latitude fjords. Using bathymetric, sub-bottom, and sediment core data, this study seeks to generate a comprehensive understanding of the distribution, morphology, lithology, and timing of submarine landslides in Pangnirtung Fjord (SE Baffin Island, Nunavut). These results are used to evaluate the influence of different environmental controls on the generation of submarine landslides in Arctic fjords. We identified 180 near-surface submarine landslides, most of which are relatively small (∼ 0.13 km2), with elongated depletion zones and wide deposits dispersed along the basin floor of the fjord. Landslide ages, calculated from radiocarbon dating and 210Pb/137Cs activities, indicate that 8 of the 11 dated landslides occurred in the last 200 years. Four types of environmental controls were identified, which are believed to have preconditioned or triggered the observed landslides: 1) 51% of landslides, by area, are associated with subaerial sources and extend offshore of debris flow channels and fans; 2) 23% are initiated in shallow-water (< 40 m), are non-subaerially influenced, and may have been triggered by nearshore processes and sea-ice loading; 3) 13% are located in deeper waters (>40 m) and associated with sills and moraines, suggesting they are older deposits associated with the retreat of the ice sheet in the fjord; and 4) 13% are offshore of river deltas, likely associated with delta progradation; they form the largest landslide deposits in the fjord. This research suggests that the main triggers for submarine landslides in high-latitude fjords are climatically influenced (rainfall, floods, subaerial debris flows, and sea ice loading). Consequently, the predicted increase in the frequency of subaerial debris flows and river floods due to anthropogenic climate change will likely result in an increase in the recurrence of these types of submarine landslides. Additional monitoring efforts will be then needed to fully evaluate how future climate will impact the submarine landslide hazard across the Arctic.
期刊介绍:
Marine Geology is the premier international journal on marine geological processes in the broadest sense. We seek papers that are comprehensive, interdisciplinary and synthetic that will be lasting contributions to the field. Although most papers are based on regional studies, they must demonstrate new findings of international significance. We accept papers on subjects as diverse as seafloor hydrothermal systems, beach dynamics, early diagenesis, microbiological studies in sediments, palaeoclimate studies and geophysical studies of the seabed. We encourage papers that address emerging new fields, for example the influence of anthropogenic processes on coastal/marine geology and coastal/marine geoarchaeology. We insist that the papers are concerned with the marine realm and that they deal with geology: with rocks, sediments, and physical and chemical processes affecting them. Papers should address scientific hypotheses: highly descriptive data compilations or papers that deal only with marine management and risk assessment should be submitted to other journals. Papers on laboratory or modelling studies must demonstrate direct relevance to marine processes or deposits. The primary criteria for acceptance of papers is that the science is of high quality, novel, significant, and of broad international interest.