Daniar Estu Widiyanti, Krisma Asmoro, Soo Young Shin
{"title":"联合优化相移和任务卸载,实现超越 6G 通信的 RIS 辅助多址边缘计算","authors":"Daniar Estu Widiyanti, Krisma Asmoro, Soo Young Shin","doi":"10.1016/j.icte.2024.04.004","DOIUrl":null,"url":null,"abstract":"<div><p>Beyond 6G services and applications demand high and efficient processing capacity due to the massive connectivity of users equipment (UEs). However, the high computational capability and energy consumption of UEs are limited, which becomes a main challenge to overcome. Multi-access edge computing (MEC) has recently been studied widely as it can potentially assist complex tasks executed at UEs. Furthermore, several techniques have been proposed to optimize task offloading among users. Thus, another challenge in MEC is emerging due to the fact that mobile users do not always have a line-of-sight (LoS) to the base station (BS) due to the blocking object. Therefore, it can affect users data rate and result in incremental energy consumption. This research introduces the concept of reconfigurable intelligence surfaces (RIS) to support multiple-input-single-output (MISO) base stations (BS) in both uplink (UL) and downlink (DL) using BCD algorithms. While previous studies concentrate on enhancing task offloading and neglecting inter-user interference, this study suggests an optimization approach for UL and DL data rates, as well as minimizing task offloading delays. The results indicate that optimizing task placement, phase shift, and precoding can reduce the duration of task offloading.</p></div>","PeriodicalId":48526,"journal":{"name":"ICT Express","volume":"10 3","pages":"Pages 620-625"},"PeriodicalIF":4.1000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405959524000419/pdfft?md5=3ad3f653a2f1f8aa864d3acf87e8b4c4&pid=1-s2.0-S2405959524000419-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Joint optimization of phase shift and task offloading for RIS-assisted multi-access edge computing in beyond 6G communication\",\"authors\":\"Daniar Estu Widiyanti, Krisma Asmoro, Soo Young Shin\",\"doi\":\"10.1016/j.icte.2024.04.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Beyond 6G services and applications demand high and efficient processing capacity due to the massive connectivity of users equipment (UEs). However, the high computational capability and energy consumption of UEs are limited, which becomes a main challenge to overcome. Multi-access edge computing (MEC) has recently been studied widely as it can potentially assist complex tasks executed at UEs. Furthermore, several techniques have been proposed to optimize task offloading among users. Thus, another challenge in MEC is emerging due to the fact that mobile users do not always have a line-of-sight (LoS) to the base station (BS) due to the blocking object. Therefore, it can affect users data rate and result in incremental energy consumption. This research introduces the concept of reconfigurable intelligence surfaces (RIS) to support multiple-input-single-output (MISO) base stations (BS) in both uplink (UL) and downlink (DL) using BCD algorithms. While previous studies concentrate on enhancing task offloading and neglecting inter-user interference, this study suggests an optimization approach for UL and DL data rates, as well as minimizing task offloading delays. The results indicate that optimizing task placement, phase shift, and precoding can reduce the duration of task offloading.</p></div>\",\"PeriodicalId\":48526,\"journal\":{\"name\":\"ICT Express\",\"volume\":\"10 3\",\"pages\":\"Pages 620-625\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2405959524000419/pdfft?md5=3ad3f653a2f1f8aa864d3acf87e8b4c4&pid=1-s2.0-S2405959524000419-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICT Express\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405959524000419\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICT Express","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405959524000419","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Joint optimization of phase shift and task offloading for RIS-assisted multi-access edge computing in beyond 6G communication
Beyond 6G services and applications demand high and efficient processing capacity due to the massive connectivity of users equipment (UEs). However, the high computational capability and energy consumption of UEs are limited, which becomes a main challenge to overcome. Multi-access edge computing (MEC) has recently been studied widely as it can potentially assist complex tasks executed at UEs. Furthermore, several techniques have been proposed to optimize task offloading among users. Thus, another challenge in MEC is emerging due to the fact that mobile users do not always have a line-of-sight (LoS) to the base station (BS) due to the blocking object. Therefore, it can affect users data rate and result in incremental energy consumption. This research introduces the concept of reconfigurable intelligence surfaces (RIS) to support multiple-input-single-output (MISO) base stations (BS) in both uplink (UL) and downlink (DL) using BCD algorithms. While previous studies concentrate on enhancing task offloading and neglecting inter-user interference, this study suggests an optimization approach for UL and DL data rates, as well as minimizing task offloading delays. The results indicate that optimizing task placement, phase shift, and precoding can reduce the duration of task offloading.
期刊介绍:
The ICT Express journal published by the Korean Institute of Communications and Information Sciences (KICS) is an international, peer-reviewed research publication covering all aspects of information and communication technology. The journal aims to publish research that helps advance the theoretical and practical understanding of ICT convergence, platform technologies, communication networks, and device technologies. The technology advancement in information and communication technology (ICT) sector enables portable devices to be always connected while supporting high data rate, resulting in the recent popularity of smartphones that have a considerable impact in economic and social development.