从建筑物屋顶和阁楼收集热电能量

Saleh Umar Abubakar, Siti Amely Jumaat, Babangida Yakubu, Yau Shuaibu Haruna, Suleiman Abdulrahman
{"title":"从建筑物屋顶和阁楼收集热电能量","authors":"Saleh Umar Abubakar, Siti Amely Jumaat, Babangida Yakubu, Yau Shuaibu Haruna, Suleiman Abdulrahman","doi":"10.37934/arfmts.115.2.8395","DOIUrl":null,"url":null,"abstract":"Globally people are faced with difficulties in environmental pollution, increasing power costs, and global warming. As such researchers are focusing on enhancing energy-harvesting using thermoelectric generators for power generation to lessen the difficulties. Through the Seebeck effect, thermoelectric generators (TEGs) have proven their ability to convert thermal energy into electric power. Given the unique benefits they present, thermoelectric generators have arisen in the recent decade as a possible alternative to other green power generation technologies. A thermoelectric generator (TEG) is a solid-state device that converts thermal energy into electrical energy. TEG consists of elements of p and n-type semiconductors, connected thermally in parallel and electrically in series. In this paper, one hundred and ninety-two thermoelectric generators connected in series and parallel were used to investigate the thermal energy potential at the roof and attic area for domestic application for 20 days from the falling solar radiation on a residential prototype in Bashar, Wase Local government area of Plateau State. A theoretical analysis was used in determining the average output power (P) due to the delta T across the thermoelectric generator module junction. The load resistance value of the thermoelectric generator configuration was evaluated. The results show that the TEG generated power output ranging from 217 mW to 1.99 W throughout the day, 5.97 mW to 13.8 mW in the morning, and 6.8 mW to 36.9 mW in the evening. Furthermore, The finding also reveals that the attic side has the capacity to store thermal energy, which can be harnessed owing to the fast heat transfer to the surroundings during the convection process. In conclusion, solar irradiance has a major impact on the system.","PeriodicalId":37460,"journal":{"name":"Journal of Advanced Research in Fluid Mechanics and Thermal Sciences","volume":"44 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermoelectric Energy Harvesting from the Roof and Attics of a Building\",\"authors\":\"Saleh Umar Abubakar, Siti Amely Jumaat, Babangida Yakubu, Yau Shuaibu Haruna, Suleiman Abdulrahman\",\"doi\":\"10.37934/arfmts.115.2.8395\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Globally people are faced with difficulties in environmental pollution, increasing power costs, and global warming. As such researchers are focusing on enhancing energy-harvesting using thermoelectric generators for power generation to lessen the difficulties. Through the Seebeck effect, thermoelectric generators (TEGs) have proven their ability to convert thermal energy into electric power. Given the unique benefits they present, thermoelectric generators have arisen in the recent decade as a possible alternative to other green power generation technologies. A thermoelectric generator (TEG) is a solid-state device that converts thermal energy into electrical energy. TEG consists of elements of p and n-type semiconductors, connected thermally in parallel and electrically in series. In this paper, one hundred and ninety-two thermoelectric generators connected in series and parallel were used to investigate the thermal energy potential at the roof and attic area for domestic application for 20 days from the falling solar radiation on a residential prototype in Bashar, Wase Local government area of Plateau State. A theoretical analysis was used in determining the average output power (P) due to the delta T across the thermoelectric generator module junction. The load resistance value of the thermoelectric generator configuration was evaluated. The results show that the TEG generated power output ranging from 217 mW to 1.99 W throughout the day, 5.97 mW to 13.8 mW in the morning, and 6.8 mW to 36.9 mW in the evening. Furthermore, The finding also reveals that the attic side has the capacity to store thermal energy, which can be harnessed owing to the fast heat transfer to the surroundings during the convection process. In conclusion, solar irradiance has a major impact on the system.\",\"PeriodicalId\":37460,\"journal\":{\"name\":\"Journal of Advanced Research in Fluid Mechanics and Thermal Sciences\",\"volume\":\"44 6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advanced Research in Fluid Mechanics and Thermal Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37934/arfmts.115.2.8395\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Chemical Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Research in Fluid Mechanics and Thermal Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37934/arfmts.115.2.8395","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0

摘要

在全球范围内,人们面临着环境污染、电力成本增加和全球变暖等困难。因此,研究人员正专注于利用热电发电机加强能量收集,以减少发电困难。通过塞贝克效应,热电发电机(TEG)已经证明了其将热能转化为电能的能力。鉴于其独特的优势,近十年来,热电发电机已成为其他绿色发电技术的可能替代品。热电发电机(TEG)是一种能将热能转化为电能的固态装置。TEG 由热并联和电串联的 p 型和 n 型半导体元件组成。本文使用了 192 台串联和并联的热电发生器,对高原州瓦塞地方政府地区巴沙尔的一个住宅原型进行了为期 20 天的太阳辐射下降情况下屋顶和阁楼区域的热能潜力调查。通过理论分析,确定了热电模块结点上的三角洲 T 所产生的平均输出功率 (P)。对热电发电机配置的负载电阻值进行了评估。结果表明,热电发生器全天产生的功率输出范围为 217 mW 至 1.99 W,上午为 5.97 mW 至 13.8 mW,傍晚为 6.8 mW 至 36.9 mW。此外,研究结果还表明,阁楼一侧具有储存热能的能力,由于在对流过程中热量能快速传递到周围环境,因此可以利用这些热能。总之,太阳辐照度对系统有重大影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Thermoelectric Energy Harvesting from the Roof and Attics of a Building
Globally people are faced with difficulties in environmental pollution, increasing power costs, and global warming. As such researchers are focusing on enhancing energy-harvesting using thermoelectric generators for power generation to lessen the difficulties. Through the Seebeck effect, thermoelectric generators (TEGs) have proven their ability to convert thermal energy into electric power. Given the unique benefits they present, thermoelectric generators have arisen in the recent decade as a possible alternative to other green power generation technologies. A thermoelectric generator (TEG) is a solid-state device that converts thermal energy into electrical energy. TEG consists of elements of p and n-type semiconductors, connected thermally in parallel and electrically in series. In this paper, one hundred and ninety-two thermoelectric generators connected in series and parallel were used to investigate the thermal energy potential at the roof and attic area for domestic application for 20 days from the falling solar radiation on a residential prototype in Bashar, Wase Local government area of Plateau State. A theoretical analysis was used in determining the average output power (P) due to the delta T across the thermoelectric generator module junction. The load resistance value of the thermoelectric generator configuration was evaluated. The results show that the TEG generated power output ranging from 217 mW to 1.99 W throughout the day, 5.97 mW to 13.8 mW in the morning, and 6.8 mW to 36.9 mW in the evening. Furthermore, The finding also reveals that the attic side has the capacity to store thermal energy, which can be harnessed owing to the fast heat transfer to the surroundings during the convection process. In conclusion, solar irradiance has a major impact on the system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Advanced Research in Fluid Mechanics and Thermal Sciences
Journal of Advanced Research in Fluid Mechanics and Thermal Sciences Chemical Engineering-Fluid Flow and Transfer Processes
CiteScore
2.40
自引率
0.00%
发文量
176
期刊介绍: This journal welcomes high-quality original contributions on experimental, computational, and physical aspects of fluid mechanics and thermal sciences relevant to engineering or the environment, multiphase and microscale flows, microscale electronic and mechanical systems; medical and biological systems; and thermal and flow control in both the internal and external environment.
期刊最新文献
Synchronous Heat and Mass Transmission in MHD Ohmic Dissipative Viscous Fluid Flow Cavorted by an Upright Surface with Chemical Reaction Energy and Exergy Analysis of R600a as a Substitute for R134a in Automotive Air Conditioning System Exploration of Timber Dry and Wet Rot Defects in Buildings: Types, Causes, Effects and Mitigation Methods Investigating the Effects of Air Bubbles Injection Technique on the Cooling Time of Warm Drinking Water Preparation of TFC-PES Reverse Osmosis Hollow Fibre Membrane for Brackish Water Desalination
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1