{"title":"利用 RegionalST 进行区域分析以划分样本内异质性","authors":"Yue Lyu, Chong Wu, Wei Sun, Ziyi Li","doi":"10.1093/bioinformatics/btae186","DOIUrl":null,"url":null,"abstract":"Abstract Motivation Spatial transcriptomics has greatly contributed to our understanding of spatial and intra-sample heterogeneity, which could be crucial for deciphering the molecular basis of human diseases. Intra-tumor heterogeneity, e.g. may be associated with cancer treatment responses. However, the lack of computational tools for exploiting cross-regional information and the limited spatial resolution of current technologies present major obstacles to elucidating tissue heterogeneity. Results To address these challenges, we introduce RegionalST, an efficient computational method that enables users to quantify cell type mixture and interactions, identify sub-regions of interest, and perform cross-region cell type-specific differential analysis for the first time. Our simulations and real data applications demonstrate that RegionalST is an efficient tool for visualizing and analyzing diverse spatial transcriptomics data, thereby enabling accurate and flexible exploration of tissue heterogeneity. Overall, RegionalST provides a one-stop destination for researchers seeking to delve deeper into the intricacies of spatial transcriptomics data. Availability and implementation The implementation of our method is available as an open-source R/Bioconductor package with a user-friendly manual available at https://bioconductor.org/packages/release/bioc/html/RegionalST.html.","PeriodicalId":8903,"journal":{"name":"Bioinformatics","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regional analysis to delineate intrasample heterogeneity with RegionalST\",\"authors\":\"Yue Lyu, Chong Wu, Wei Sun, Ziyi Li\",\"doi\":\"10.1093/bioinformatics/btae186\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Motivation Spatial transcriptomics has greatly contributed to our understanding of spatial and intra-sample heterogeneity, which could be crucial for deciphering the molecular basis of human diseases. Intra-tumor heterogeneity, e.g. may be associated with cancer treatment responses. However, the lack of computational tools for exploiting cross-regional information and the limited spatial resolution of current technologies present major obstacles to elucidating tissue heterogeneity. Results To address these challenges, we introduce RegionalST, an efficient computational method that enables users to quantify cell type mixture and interactions, identify sub-regions of interest, and perform cross-region cell type-specific differential analysis for the first time. Our simulations and real data applications demonstrate that RegionalST is an efficient tool for visualizing and analyzing diverse spatial transcriptomics data, thereby enabling accurate and flexible exploration of tissue heterogeneity. Overall, RegionalST provides a one-stop destination for researchers seeking to delve deeper into the intricacies of spatial transcriptomics data. Availability and implementation The implementation of our method is available as an open-source R/Bioconductor package with a user-friendly manual available at https://bioconductor.org/packages/release/bioc/html/RegionalST.html.\",\"PeriodicalId\":8903,\"journal\":{\"name\":\"Bioinformatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bioinformatics/btae186\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btae186","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Regional analysis to delineate intrasample heterogeneity with RegionalST
Abstract Motivation Spatial transcriptomics has greatly contributed to our understanding of spatial and intra-sample heterogeneity, which could be crucial for deciphering the molecular basis of human diseases. Intra-tumor heterogeneity, e.g. may be associated with cancer treatment responses. However, the lack of computational tools for exploiting cross-regional information and the limited spatial resolution of current technologies present major obstacles to elucidating tissue heterogeneity. Results To address these challenges, we introduce RegionalST, an efficient computational method that enables users to quantify cell type mixture and interactions, identify sub-regions of interest, and perform cross-region cell type-specific differential analysis for the first time. Our simulations and real data applications demonstrate that RegionalST is an efficient tool for visualizing and analyzing diverse spatial transcriptomics data, thereby enabling accurate and flexible exploration of tissue heterogeneity. Overall, RegionalST provides a one-stop destination for researchers seeking to delve deeper into the intricacies of spatial transcriptomics data. Availability and implementation The implementation of our method is available as an open-source R/Bioconductor package with a user-friendly manual available at https://bioconductor.org/packages/release/bioc/html/RegionalST.html.
期刊介绍:
The leading journal in its field, Bioinformatics publishes the highest quality scientific papers and review articles of interest to academic and industrial researchers. Its main focus is on new developments in genome bioinformatics and computational biology. Two distinct sections within the journal - Discovery Notes and Application Notes- focus on shorter papers; the former reporting biologically interesting discoveries using computational methods, the latter exploring the applications used for experiments.