{"title":"带超弹性涂层的多层板在低速冲击下承受动态载荷的评估","authors":"Florina Bucur, L. Matache","doi":"10.37358/mp.24.1.5712","DOIUrl":null,"url":null,"abstract":"\nThis paper describes the use of video and digital image processing in investigation of the impact between a rigid hemispherical shape impactor and Hybrid Polyurea-Polyurethane-MWCNTs Nanocomposite Coatings. An experimental study was performed for six sample configurations: single aluminum plates (reference test), multilayer plates with 4 types of coatings and double aluminum plates. The impact phenomenon was recorded with a high-speed video camera and the variation of the projectile s velocity during the impact was obtained through digital analysis. Additionally, the test was instrumented using a force sensor specially designed and mounted on the impactor. The video processing was used to draw the velocity curves and to estimate the evolution of the contact forces between the impactor and the multilayer structures, the results obtained being compared with the force sensor data. Some differences between these two types of measurements are observed, so in order to analyze the configurations behavior, a numerical study of the phenomena was performed in LS-DYNA software using a 2D axial symmetric model. The simulations showed that the profile of the force evolution measured with the sensor is affected by the chosen constructive solution and the data obtained based on the video images are more accurate. The deformations were analyzed, the maximum deformation based on image processing and the residual deformation based on 3D Scan post-test. The video technique combined with 3D Scan are precise enough to study the impact at low velocities and the numerical simulations provide results according to reality. The hyperelastic coatings contribute to a better resistance of the aluminum plates.\n","PeriodicalId":18360,"journal":{"name":"Materiale Plastice","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessment of Multilayered Plates with Hyperelastic Coatings Subjected to Dynamic Loadings by Impact at Low Velocities\",\"authors\":\"Florina Bucur, L. Matache\",\"doi\":\"10.37358/mp.24.1.5712\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nThis paper describes the use of video and digital image processing in investigation of the impact between a rigid hemispherical shape impactor and Hybrid Polyurea-Polyurethane-MWCNTs Nanocomposite Coatings. An experimental study was performed for six sample configurations: single aluminum plates (reference test), multilayer plates with 4 types of coatings and double aluminum plates. The impact phenomenon was recorded with a high-speed video camera and the variation of the projectile s velocity during the impact was obtained through digital analysis. Additionally, the test was instrumented using a force sensor specially designed and mounted on the impactor. The video processing was used to draw the velocity curves and to estimate the evolution of the contact forces between the impactor and the multilayer structures, the results obtained being compared with the force sensor data. Some differences between these two types of measurements are observed, so in order to analyze the configurations behavior, a numerical study of the phenomena was performed in LS-DYNA software using a 2D axial symmetric model. The simulations showed that the profile of the force evolution measured with the sensor is affected by the chosen constructive solution and the data obtained based on the video images are more accurate. The deformations were analyzed, the maximum deformation based on image processing and the residual deformation based on 3D Scan post-test. The video technique combined with 3D Scan are precise enough to study the impact at low velocities and the numerical simulations provide results according to reality. The hyperelastic coatings contribute to a better resistance of the aluminum plates.\\n\",\"PeriodicalId\":18360,\"journal\":{\"name\":\"Materiale Plastice\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materiale Plastice\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.37358/mp.24.1.5712\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materiale Plastice","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.37358/mp.24.1.5712","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
本文介绍了利用视频和数字图像处理技术研究刚性半球形冲击器与混合聚脲-聚氨酯-MWCNTs 纳米复合涂层之间的撞击。对六种样品配置进行了实验研究:单层铝板(参考试验)、带有四种涂层的多层板和双层铝板。用高速摄像机记录了撞击现象,并通过数字分析获得了弹丸在撞击过程中的速度变化。此外,试验还使用了专门设计并安装在冲击器上的力传感器。视频处理用于绘制速度曲线和估算冲击器与多层结构之间接触力的变化,并将获得的结果与力传感器的数据进行比较。观察到这两种测量结果之间存在一些差异,因此为了分析配置行为,使用二维轴对称模型在 LS-DYNA 软件中对这些现象进行了数值研究。模拟结果表明,传感器测得的力的变化曲线受所选构造方案的影响,而根据视频图像获得的数据更为精确。对变形进行了分析,最大变形基于图像处理,残余变形基于 3D 扫描后测试。视频技术与三维扫描相结合,足以精确地研究低速冲击,而数值模拟提供的结果与实际情况相符。超弹性涂层有助于提高铝板的抗冲击性。
Assessment of Multilayered Plates with Hyperelastic Coatings Subjected to Dynamic Loadings by Impact at Low Velocities
This paper describes the use of video and digital image processing in investigation of the impact between a rigid hemispherical shape impactor and Hybrid Polyurea-Polyurethane-MWCNTs Nanocomposite Coatings. An experimental study was performed for six sample configurations: single aluminum plates (reference test), multilayer plates with 4 types of coatings and double aluminum plates. The impact phenomenon was recorded with a high-speed video camera and the variation of the projectile s velocity during the impact was obtained through digital analysis. Additionally, the test was instrumented using a force sensor specially designed and mounted on the impactor. The video processing was used to draw the velocity curves and to estimate the evolution of the contact forces between the impactor and the multilayer structures, the results obtained being compared with the force sensor data. Some differences between these two types of measurements are observed, so in order to analyze the configurations behavior, a numerical study of the phenomena was performed in LS-DYNA software using a 2D axial symmetric model. The simulations showed that the profile of the force evolution measured with the sensor is affected by the chosen constructive solution and the data obtained based on the video images are more accurate. The deformations were analyzed, the maximum deformation based on image processing and the residual deformation based on 3D Scan post-test. The video technique combined with 3D Scan are precise enough to study the impact at low velocities and the numerical simulations provide results according to reality. The hyperelastic coatings contribute to a better resistance of the aluminum plates.
期刊介绍:
Materiale Plastice, abbreviated as Mater. Plast., publishes original scientific papers or guest reviews on topics of great interest.
The Journal does not publish memos, technical reports or non-original papers (that are a compiling of literature data) or papers that have been already published in other national or foreign Journal.