Y. Tian, W. Zhou, Q. Wang, X. Niu, W. Han, H. Yang, H. Zhang, S. Liao, X. Li, C. Zhao
{"title":"用于重离子加速器束流监测的新型硅像素传感器","authors":"Y. Tian, W. Zhou, Q. Wang, X. Niu, W. Han, H. Yang, H. Zhang, S. Liao, X. Li, C. Zhao","doi":"10.1088/1748-0221/19/04/c04039","DOIUrl":null,"url":null,"abstract":"\n This paper describes a silicon pixel sensor for non-interceptive real-time beam monitoring at heavy-ion accelerators. The total size of the sensor is 4 mm × 5 mm. It has 64 (row) × 120 (column) square pixels, each single of which is in the size of 40 μm × 40 μm. With the exposed sensing pad, this sensor can directly collect the charge in the media over the pixels. The in-pixel circuit mainly consists of a low-noise Charge Sensitive Amplifier (CSA) to establish the signal for the energy reconstruction and a discriminator with a Time-to-Amplitude Converter (TAC) for the Time of Arrival (TOA) measurement. The analog signal from each pixel is accessible through time-shared multiplexing over the entire pixel array. This paper will discuss the design of this IMPix-S1 sensor.","PeriodicalId":507814,"journal":{"name":"Journal of Instrumentation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel silicon pixel sensor for beam monitoring applications at heavy-ion accelerators\",\"authors\":\"Y. Tian, W. Zhou, Q. Wang, X. Niu, W. Han, H. Yang, H. Zhang, S. Liao, X. Li, C. Zhao\",\"doi\":\"10.1088/1748-0221/19/04/c04039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This paper describes a silicon pixel sensor for non-interceptive real-time beam monitoring at heavy-ion accelerators. The total size of the sensor is 4 mm × 5 mm. It has 64 (row) × 120 (column) square pixels, each single of which is in the size of 40 μm × 40 μm. With the exposed sensing pad, this sensor can directly collect the charge in the media over the pixels. The in-pixel circuit mainly consists of a low-noise Charge Sensitive Amplifier (CSA) to establish the signal for the energy reconstruction and a discriminator with a Time-to-Amplitude Converter (TAC) for the Time of Arrival (TOA) measurement. The analog signal from each pixel is accessible through time-shared multiplexing over the entire pixel array. This paper will discuss the design of this IMPix-S1 sensor.\",\"PeriodicalId\":507814,\"journal\":{\"name\":\"Journal of Instrumentation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Instrumentation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1748-0221/19/04/c04039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Instrumentation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1748-0221/19/04/c04039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A novel silicon pixel sensor for beam monitoring applications at heavy-ion accelerators
This paper describes a silicon pixel sensor for non-interceptive real-time beam monitoring at heavy-ion accelerators. The total size of the sensor is 4 mm × 5 mm. It has 64 (row) × 120 (column) square pixels, each single of which is in the size of 40 μm × 40 μm. With the exposed sensing pad, this sensor can directly collect the charge in the media over the pixels. The in-pixel circuit mainly consists of a low-noise Charge Sensitive Amplifier (CSA) to establish the signal for the energy reconstruction and a discriminator with a Time-to-Amplitude Converter (TAC) for the Time of Arrival (TOA) measurement. The analog signal from each pixel is accessible through time-shared multiplexing over the entire pixel array. This paper will discuss the design of this IMPix-S1 sensor.