用机器学习方法预测考虑各种因素的深基坑钢支撑结构的支撑力

IF 8.2 1区 工程技术 Q1 ENGINEERING, CIVIL Underground Space Pub Date : 2024-04-03 DOI:10.1016/j.undsp.2023.12.005
Haibo Hu, Xunjian Hu, Xiaonan Gong
{"title":"用机器学习方法预测考虑各种因素的深基坑钢支撑结构的支撑力","authors":"Haibo Hu,&nbsp;Xunjian Hu,&nbsp;Xiaonan Gong","doi":"10.1016/j.undsp.2023.12.005","DOIUrl":null,"url":null,"abstract":"<div><p>The application of steel strut force servo systems in deep excavation engineering is not widespread, and there is a notable scarcity of in-situ measured datasets. This presents a significant research gap in the field. Addressing this, our study introduces a valuable dataset and application scenarios, serving as a reference point for future research. The main objective of this study is to use machine learning (ML) methods for accurately predicting strut forces in steel supporting structures, a crucial aspect for the safety and stability of deep excavation projects. We employed five different ML methods: radial basis function neural network (RBFNN), back propagation neural network (BPNN), <em>K</em>-Nearest Neighbor (KNN), support vector machine (SVM), and random forest (RF), utilizing a dataset of 2208 measured points. These points included one output parameter (strut forces) and seven input parameters (vertical position of strut, plane position of strut, time, temperature, unit weight, cohesion, and internal frictional angle). The effectiveness of these methods was assessed using root mean square error (RMSE), correlation coefficient (<em>R</em>), and mean absolute error (MAE). Our findings indicate that the BPNN method outperforms others, with RMSE, <em>R</em>, and MAE values of 72.1 kN, 0.9931, and 57.4 kN, respectively, on the testing dataset. This study underscores the potential of ML methods in precisely predicting strut forces in deep excavation engineering, contributing to enhanced safety measures and project planning.</p></div>","PeriodicalId":48505,"journal":{"name":"Underground Space","volume":"18 ","pages":"Pages 114-129"},"PeriodicalIF":8.2000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2467967424000308/pdfft?md5=c487b2f4422e9875ea2ee5760ffafcba&pid=1-s2.0-S2467967424000308-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Predicting the strut forces of the steel supporting structure of deep excavation considering various factors by machine learning methods\",\"authors\":\"Haibo Hu,&nbsp;Xunjian Hu,&nbsp;Xiaonan Gong\",\"doi\":\"10.1016/j.undsp.2023.12.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The application of steel strut force servo systems in deep excavation engineering is not widespread, and there is a notable scarcity of in-situ measured datasets. This presents a significant research gap in the field. Addressing this, our study introduces a valuable dataset and application scenarios, serving as a reference point for future research. The main objective of this study is to use machine learning (ML) methods for accurately predicting strut forces in steel supporting structures, a crucial aspect for the safety and stability of deep excavation projects. We employed five different ML methods: radial basis function neural network (RBFNN), back propagation neural network (BPNN), <em>K</em>-Nearest Neighbor (KNN), support vector machine (SVM), and random forest (RF), utilizing a dataset of 2208 measured points. These points included one output parameter (strut forces) and seven input parameters (vertical position of strut, plane position of strut, time, temperature, unit weight, cohesion, and internal frictional angle). The effectiveness of these methods was assessed using root mean square error (RMSE), correlation coefficient (<em>R</em>), and mean absolute error (MAE). Our findings indicate that the BPNN method outperforms others, with RMSE, <em>R</em>, and MAE values of 72.1 kN, 0.9931, and 57.4 kN, respectively, on the testing dataset. This study underscores the potential of ML methods in precisely predicting strut forces in deep excavation engineering, contributing to enhanced safety measures and project planning.</p></div>\",\"PeriodicalId\":48505,\"journal\":{\"name\":\"Underground Space\",\"volume\":\"18 \",\"pages\":\"Pages 114-129\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2467967424000308/pdfft?md5=c487b2f4422e9875ea2ee5760ffafcba&pid=1-s2.0-S2467967424000308-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Underground Space\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2467967424000308\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Underground Space","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2467967424000308","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

钢支撑力伺服系统在深层挖掘工程中的应用并不广泛,而且现场测量数据集也非常缺乏。这是该领域的一个重大研究空白。为此,我们的研究引入了宝贵的数据集和应用场景,为未来研究提供参考。本研究的主要目的是使用机器学习(ML)方法准确预测钢支撑结构中的支撑力,这对深层挖掘项目的安全性和稳定性至关重要。我们采用了五种不同的 ML 方法:径向基函数神经网络 (RBFNN)、反向传播神经网络 (BPNN)、K-近邻 (KNN)、支持向量机 (SVM) 和随机森林 (RF),并利用了一个包含 2208 个测量点的数据集。这些点包括一个输出参数(支撑力)和七个输入参数(支撑的垂直位置、支撑的平面位置、时间、温度、单位重量、内聚力和内摩擦角)。使用均方根误差 (RMSE)、相关系数 (R) 和平均绝对误差 (MAE) 评估了这些方法的有效性。研究结果表明,BPNN 方法优于其他方法,在测试数据集上的 RMSE、R 和 MAE 值分别为 72.1 kN、0.9931 和 57.4 kN。这项研究强调了 ML 方法在精确预测深层挖掘工程中支撑力方面的潜力,有助于加强安全措施和项目规划。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Predicting the strut forces of the steel supporting structure of deep excavation considering various factors by machine learning methods

The application of steel strut force servo systems in deep excavation engineering is not widespread, and there is a notable scarcity of in-situ measured datasets. This presents a significant research gap in the field. Addressing this, our study introduces a valuable dataset and application scenarios, serving as a reference point for future research. The main objective of this study is to use machine learning (ML) methods for accurately predicting strut forces in steel supporting structures, a crucial aspect for the safety and stability of deep excavation projects. We employed five different ML methods: radial basis function neural network (RBFNN), back propagation neural network (BPNN), K-Nearest Neighbor (KNN), support vector machine (SVM), and random forest (RF), utilizing a dataset of 2208 measured points. These points included one output parameter (strut forces) and seven input parameters (vertical position of strut, plane position of strut, time, temperature, unit weight, cohesion, and internal frictional angle). The effectiveness of these methods was assessed using root mean square error (RMSE), correlation coefficient (R), and mean absolute error (MAE). Our findings indicate that the BPNN method outperforms others, with RMSE, R, and MAE values of 72.1 kN, 0.9931, and 57.4 kN, respectively, on the testing dataset. This study underscores the potential of ML methods in precisely predicting strut forces in deep excavation engineering, contributing to enhanced safety measures and project planning.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Underground Space
Underground Space ENGINEERING, CIVIL-
CiteScore
10.20
自引率
14.10%
发文量
71
审稿时长
63 days
期刊介绍: Underground Space is an open access international journal without article processing charges (APC) committed to serving as a scientific forum for researchers and practitioners in the field of underground engineering. The journal welcomes manuscripts that deal with original theories, methods, technologies, and important applications throughout the life-cycle of underground projects, including planning, design, operation and maintenance, disaster prevention, and demolition. The journal is particularly interested in manuscripts related to the latest development of smart underground engineering from the perspectives of resilience, resources saving, environmental friendliness, humanity, and artificial intelligence. The manuscripts are expected to have significant innovation and potential impact in the field of underground engineering, and should have clear association with or application in underground projects.
期刊最新文献
Series of centrifuge shaking table tests study on seismic response of subway station structures in soft soil sites Analysis of hydraulic breakdown and seepage of tail sealing system in shield tunnel machines Back analysis of geomechanical parameters based on a data augmentation algorithm and machine learning technique Characteristics of deformation and defect of shield tunnel in coastal structured soil in China Numerical analysis of a deep and oversized group excavation: A case study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1