{"title":"用于河堤的新型土工织物管的二维破坏机理和破坏模式","authors":"Berit Finklenburg, Elena-Maria Klopries, Holger Schüttrumpf","doi":"10.1016/j.geotexmem.2024.03.009","DOIUrl":null,"url":null,"abstract":"<div><p>A new type of small, dry-filled geotextile tubes is introduced, that, in a stacked formation, can be used as dike cores. Dikes made out of these tubes consist of great potential regarding more resilient flood protection. The geotextile protects the fill from erosion, enabling steeper slopes along with reduced material and less land consumption. The behavior and potential failure mechanisms of such dikes were investigated first by literature research and second by full-scale hydraulic model tests under systematic variation of tube number, number of textile layers, filling ratio, and fill material. The tubes were exposed to the loads of seepage and overflow. Most relevant failure mechanisms were seepage-induced sagging, lateral displacement, and overturning of the upper tube due to overflow. During seepage, the tube height was reduced by up to 22.8 % due to sagging. Overflow led to a lateral displacement of up to 13 cm and, at overflow heights of 23.1 cm and 26.8 cm, to overturning of the upper tube. The present results give new insights into the behavior of innovatively constructed geotextile tubes under hydraulic loads and serve as basis for the development of design rules.</p></div>","PeriodicalId":55096,"journal":{"name":"Geotextiles and Geomembranes","volume":"52 4","pages":"Pages 690-703"},"PeriodicalIF":4.7000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S026611442400030X/pdfft?md5=29646a3a99b5ea30a6176299bc6ec294&pid=1-s2.0-S026611442400030X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"2D failure mechanisms and failure modes of a new type of geotextile tubes used for river dikes\",\"authors\":\"Berit Finklenburg, Elena-Maria Klopries, Holger Schüttrumpf\",\"doi\":\"10.1016/j.geotexmem.2024.03.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A new type of small, dry-filled geotextile tubes is introduced, that, in a stacked formation, can be used as dike cores. Dikes made out of these tubes consist of great potential regarding more resilient flood protection. The geotextile protects the fill from erosion, enabling steeper slopes along with reduced material and less land consumption. The behavior and potential failure mechanisms of such dikes were investigated first by literature research and second by full-scale hydraulic model tests under systematic variation of tube number, number of textile layers, filling ratio, and fill material. The tubes were exposed to the loads of seepage and overflow. Most relevant failure mechanisms were seepage-induced sagging, lateral displacement, and overturning of the upper tube due to overflow. During seepage, the tube height was reduced by up to 22.8 % due to sagging. Overflow led to a lateral displacement of up to 13 cm and, at overflow heights of 23.1 cm and 26.8 cm, to overturning of the upper tube. The present results give new insights into the behavior of innovatively constructed geotextile tubes under hydraulic loads and serve as basis for the development of design rules.</p></div>\",\"PeriodicalId\":55096,\"journal\":{\"name\":\"Geotextiles and Geomembranes\",\"volume\":\"52 4\",\"pages\":\"Pages 690-703\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S026611442400030X/pdfft?md5=29646a3a99b5ea30a6176299bc6ec294&pid=1-s2.0-S026611442400030X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geotextiles and Geomembranes\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S026611442400030X\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geotextiles and Geomembranes","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S026611442400030X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
2D failure mechanisms and failure modes of a new type of geotextile tubes used for river dikes
A new type of small, dry-filled geotextile tubes is introduced, that, in a stacked formation, can be used as dike cores. Dikes made out of these tubes consist of great potential regarding more resilient flood protection. The geotextile protects the fill from erosion, enabling steeper slopes along with reduced material and less land consumption. The behavior and potential failure mechanisms of such dikes were investigated first by literature research and second by full-scale hydraulic model tests under systematic variation of tube number, number of textile layers, filling ratio, and fill material. The tubes were exposed to the loads of seepage and overflow. Most relevant failure mechanisms were seepage-induced sagging, lateral displacement, and overturning of the upper tube due to overflow. During seepage, the tube height was reduced by up to 22.8 % due to sagging. Overflow led to a lateral displacement of up to 13 cm and, at overflow heights of 23.1 cm and 26.8 cm, to overturning of the upper tube. The present results give new insights into the behavior of innovatively constructed geotextile tubes under hydraulic loads and serve as basis for the development of design rules.
期刊介绍:
The range of products and their applications has expanded rapidly over the last decade with geotextiles and geomembranes being specified world wide. This rapid growth is paralleled by a virtual explosion of technology. Current reference books and even manufacturers' sponsored publications tend to date very quickly and the need for a vehicle to bring together and discuss the growing body of technology now available has become evident.
Geotextiles and Geomembranes fills this need and provides a forum for the dissemination of information amongst research workers, designers, users and manufacturers. By providing a growing fund of information the journal increases general awareness, prompts further research and assists in the establishment of international codes and regulations.