用于多波段微波吸收的双磁性金属构建的铁@钴纳米线核壳结构

IF 4.8 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Progress in Natural Science: Materials International Pub Date : 2024-04-01 DOI:10.1016/j.pnsc.2024.03.008
Ping-an Yang , Rui Cai , Haibo Ruan , Nanqing Zhang , Xin Huang , Rui Li , Yuxin Zhang , Yi Lu , Zhihao Zhou
{"title":"用于多波段微波吸收的双磁性金属构建的铁@钴纳米线核壳结构","authors":"Ping-an Yang ,&nbsp;Rui Cai ,&nbsp;Haibo Ruan ,&nbsp;Nanqing Zhang ,&nbsp;Xin Huang ,&nbsp;Rui Li ,&nbsp;Yuxin Zhang ,&nbsp;Yi Lu ,&nbsp;Zhihao Zhou","doi":"10.1016/j.pnsc.2024.03.008","DOIUrl":null,"url":null,"abstract":"<div><p>Controlled fabrication of materials by surface modification techniques has been a hot research topic. In this paper, one-dimensional (1D) core-shell structure Fe@Co nanowires (NWs) were successfully prepared by anchoring 0-dimensional (0D) Co nanoparticles on 1D Fe NWs based on the in situ reduction method. The electromagnetic parameters of the specimens at a filler mass fraction of 25 ​wt% were tested and the microwave loss mechanism was deeply analyzed. Binary magnetic metals in a core-shell structure have excellent multi-band microwave absorption capability (S-band, X-band and Ku-band). This is due to the heterogeneous interface and magnetic coupling effects tuning the dielectric and magnetic loss. This study offers a workable plan for creating effective multi-band magnetic metal-based microwave absorbers.</p></div>","PeriodicalId":20742,"journal":{"name":"Progress in Natural Science: Materials International","volume":"34 2","pages":"Pages 354-361"},"PeriodicalIF":4.8000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bimagnetic metal constructed core-shell structure of Fe@Co nanowires for multi-band microwave absorption\",\"authors\":\"Ping-an Yang ,&nbsp;Rui Cai ,&nbsp;Haibo Ruan ,&nbsp;Nanqing Zhang ,&nbsp;Xin Huang ,&nbsp;Rui Li ,&nbsp;Yuxin Zhang ,&nbsp;Yi Lu ,&nbsp;Zhihao Zhou\",\"doi\":\"10.1016/j.pnsc.2024.03.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Controlled fabrication of materials by surface modification techniques has been a hot research topic. In this paper, one-dimensional (1D) core-shell structure Fe@Co nanowires (NWs) were successfully prepared by anchoring 0-dimensional (0D) Co nanoparticles on 1D Fe NWs based on the in situ reduction method. The electromagnetic parameters of the specimens at a filler mass fraction of 25 ​wt% were tested and the microwave loss mechanism was deeply analyzed. Binary magnetic metals in a core-shell structure have excellent multi-band microwave absorption capability (S-band, X-band and Ku-band). This is due to the heterogeneous interface and magnetic coupling effects tuning the dielectric and magnetic loss. This study offers a workable plan for creating effective multi-band magnetic metal-based microwave absorbers.</p></div>\",\"PeriodicalId\":20742,\"journal\":{\"name\":\"Progress in Natural Science: Materials International\",\"volume\":\"34 2\",\"pages\":\"Pages 354-361\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Natural Science: Materials International\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1002007124000844\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Natural Science: Materials International","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1002007124000844","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

利用表面改性技术控制材料的制备一直是研究热点。本文基于原位还原法,将 0 维 Co 纳米颗粒锚定在 1 维 Fe 纳米线上,成功制备了一维(1D)核壳结构的 Fe@Co 纳米线(NWs)。测试了填料质量分数为 25 wt% 时试样的电磁参数,并深入分析了微波损耗机理。核壳结构中的二元磁性金属具有优异的多波段微波吸收能力(S 波段、X 波段和 Ku 波段)。这是由于异质界面和磁耦合效应调整了介电和磁损耗。这项研究为制造有效的多波段磁性金属基微波吸收器提供了可行的方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bimagnetic metal constructed core-shell structure of Fe@Co nanowires for multi-band microwave absorption

Controlled fabrication of materials by surface modification techniques has been a hot research topic. In this paper, one-dimensional (1D) core-shell structure Fe@Co nanowires (NWs) were successfully prepared by anchoring 0-dimensional (0D) Co nanoparticles on 1D Fe NWs based on the in situ reduction method. The electromagnetic parameters of the specimens at a filler mass fraction of 25 ​wt% were tested and the microwave loss mechanism was deeply analyzed. Binary magnetic metals in a core-shell structure have excellent multi-band microwave absorption capability (S-band, X-band and Ku-band). This is due to the heterogeneous interface and magnetic coupling effects tuning the dielectric and magnetic loss. This study offers a workable plan for creating effective multi-band magnetic metal-based microwave absorbers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.60
自引率
2.10%
发文量
2812
审稿时长
49 days
期刊介绍: Progress in Natural Science: Materials International provides scientists and engineers throughout the world with a central vehicle for the exchange and dissemination of basic theoretical studies and applied research of advanced materials. The emphasis is placed on original research, both analytical and experimental, which is of permanent interest to engineers and scientists, covering all aspects of new materials and technologies, such as, energy and environmental materials; advanced structural materials; advanced transportation materials, functional and electronic materials; nano-scale and amorphous materials; health and biological materials; materials modeling and simulation; materials characterization; and so on. The latest research achievements and innovative papers in basic theoretical studies and applied research of material science will be carefully selected and promptly reported. Thus, the aim of this Journal is to serve the global materials science and technology community with the latest research findings. As a service to readers, an international bibliography of recent publications in advanced materials is published bimonthly.
期刊最新文献
Editorial Board Hot deformation behavior and dynamic recrystallization of 2195 Al–Li alloy with various pre-precipitation microstructures Large pyroelectric current generation induced by droplet cooling Comprehensive hydrogen storage properties of free-V Ti1-xZrxMn0.9Cr0.7Fe0.1 alloys with different Zr substitution content Unraveling the oxygen evolution activity of biomass-derived porous carbon plate as self-supported metal-free electrocatalyst for water splitting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1