{"title":"IoV-6G+:6G 辅助环境下基于区块链的安全车联网数据收集与共享框架","authors":"Vipin Kumar, Rifaqat Ali, Pawan Kumar Sharma","doi":"10.1016/j.vehcom.2024.100783","DOIUrl":null,"url":null,"abstract":"<div><p>The growing need for wide and ubiquitous accessibility to advanced Intelligent Transportation Systems (ITS) has led to the evolution of conventional Vehicle to Everything (V2X) paradigms into the Internet of Vehicles (IoVs). Next-generation IoVs establish seamless connections among humans, vehicles, Internet of Things (IoT) devices, and service platforms to enhance transit efficiency, road safety, and environmental conservation, with notable advancements in IoV technologies, specifically in secure data exchange and user privacy protection. Additionally, Unmanned Aerial Vehicles (UAVs) are envisioned as scalable and adaptable solutions for comprehensive IoV service coverage. The current approaches in IoV mainly concentrate on local infrastructure setups, overlooking the potential of infrastructure-less IoVs that lack extensive edge facilities. Also, the transmission of data over public channels by vehicles equipped with servers is susceptible to interception and tampering by malicious attackers. Moreover, the substantial amount of real-time data generated by vehicles, IoT devices, travelers, and social interactions pose a significant strain on servers as well as latency issues. To address these security concerns, this research suggests a secure-lightweight data collection and sharing framework for 6G-assisted smart transportation using blockchain and UAV, called IoV-6G+. The process entails drones collecting information and transmitting it to dedicated edge servers that securely aggregate the information and generate transactions on a cloud server. A cloud server securely collects data from edge servers, creates transactions, combines them into blocks, and then confirms and adds these blocks to the blockchain through a voting-based consensus method in a peer-to-peer network of cloud servers. Additionally, the security analysis of our proposed IoV-6G+ is assessed using the “Informal and formal (i.e., Scyther Tool, and Real-or-Random (RoR) Model) methods”, showcasing its efficacy in delivering a secure and efficient authentication mechanism for IoV. Moreover, the proposed IoV-6G+ exhibits lower computational and communication costs as well as energy consumption, along with enhanced security features, when compared to existing authentication frameworks.</p></div>","PeriodicalId":54346,"journal":{"name":"Vehicular Communications","volume":null,"pages":null},"PeriodicalIF":5.8000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"IoV-6G+: A secure blockchain-based data collection and sharing framework for Internet of vehicles in 6G-assisted environment\",\"authors\":\"Vipin Kumar, Rifaqat Ali, Pawan Kumar Sharma\",\"doi\":\"10.1016/j.vehcom.2024.100783\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The growing need for wide and ubiquitous accessibility to advanced Intelligent Transportation Systems (ITS) has led to the evolution of conventional Vehicle to Everything (V2X) paradigms into the Internet of Vehicles (IoVs). Next-generation IoVs establish seamless connections among humans, vehicles, Internet of Things (IoT) devices, and service platforms to enhance transit efficiency, road safety, and environmental conservation, with notable advancements in IoV technologies, specifically in secure data exchange and user privacy protection. Additionally, Unmanned Aerial Vehicles (UAVs) are envisioned as scalable and adaptable solutions for comprehensive IoV service coverage. The current approaches in IoV mainly concentrate on local infrastructure setups, overlooking the potential of infrastructure-less IoVs that lack extensive edge facilities. Also, the transmission of data over public channels by vehicles equipped with servers is susceptible to interception and tampering by malicious attackers. Moreover, the substantial amount of real-time data generated by vehicles, IoT devices, travelers, and social interactions pose a significant strain on servers as well as latency issues. To address these security concerns, this research suggests a secure-lightweight data collection and sharing framework for 6G-assisted smart transportation using blockchain and UAV, called IoV-6G+. The process entails drones collecting information and transmitting it to dedicated edge servers that securely aggregate the information and generate transactions on a cloud server. A cloud server securely collects data from edge servers, creates transactions, combines them into blocks, and then confirms and adds these blocks to the blockchain through a voting-based consensus method in a peer-to-peer network of cloud servers. Additionally, the security analysis of our proposed IoV-6G+ is assessed using the “Informal and formal (i.e., Scyther Tool, and Real-or-Random (RoR) Model) methods”, showcasing its efficacy in delivering a secure and efficient authentication mechanism for IoV. Moreover, the proposed IoV-6G+ exhibits lower computational and communication costs as well as energy consumption, along with enhanced security features, when compared to existing authentication frameworks.</p></div>\",\"PeriodicalId\":54346,\"journal\":{\"name\":\"Vehicular Communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vehicular Communications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214209624000585\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vehicular Communications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214209624000585","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
IoV-6G+: A secure blockchain-based data collection and sharing framework for Internet of vehicles in 6G-assisted environment
The growing need for wide and ubiquitous accessibility to advanced Intelligent Transportation Systems (ITS) has led to the evolution of conventional Vehicle to Everything (V2X) paradigms into the Internet of Vehicles (IoVs). Next-generation IoVs establish seamless connections among humans, vehicles, Internet of Things (IoT) devices, and service platforms to enhance transit efficiency, road safety, and environmental conservation, with notable advancements in IoV technologies, specifically in secure data exchange and user privacy protection. Additionally, Unmanned Aerial Vehicles (UAVs) are envisioned as scalable and adaptable solutions for comprehensive IoV service coverage. The current approaches in IoV mainly concentrate on local infrastructure setups, overlooking the potential of infrastructure-less IoVs that lack extensive edge facilities. Also, the transmission of data over public channels by vehicles equipped with servers is susceptible to interception and tampering by malicious attackers. Moreover, the substantial amount of real-time data generated by vehicles, IoT devices, travelers, and social interactions pose a significant strain on servers as well as latency issues. To address these security concerns, this research suggests a secure-lightweight data collection and sharing framework for 6G-assisted smart transportation using blockchain and UAV, called IoV-6G+. The process entails drones collecting information and transmitting it to dedicated edge servers that securely aggregate the information and generate transactions on a cloud server. A cloud server securely collects data from edge servers, creates transactions, combines them into blocks, and then confirms and adds these blocks to the blockchain through a voting-based consensus method in a peer-to-peer network of cloud servers. Additionally, the security analysis of our proposed IoV-6G+ is assessed using the “Informal and formal (i.e., Scyther Tool, and Real-or-Random (RoR) Model) methods”, showcasing its efficacy in delivering a secure and efficient authentication mechanism for IoV. Moreover, the proposed IoV-6G+ exhibits lower computational and communication costs as well as energy consumption, along with enhanced security features, when compared to existing authentication frameworks.
期刊介绍:
Vehicular communications is a growing area of communications between vehicles and including roadside communication infrastructure. Advances in wireless communications are making possible sharing of information through real time communications between vehicles and infrastructure. This has led to applications to increase safety of vehicles and communication between passengers and the Internet. Standardization efforts on vehicular communication are also underway to make vehicular transportation safer, greener and easier.
The aim of the journal is to publish high quality peer–reviewed papers in the area of vehicular communications. The scope encompasses all types of communications involving vehicles, including vehicle–to–vehicle and vehicle–to–infrastructure. The scope includes (but not limited to) the following topics related to vehicular communications:
Vehicle to vehicle and vehicle to infrastructure communications
Channel modelling, modulating and coding
Congestion Control and scalability issues
Protocol design, testing and verification
Routing in vehicular networks
Security issues and countermeasures
Deployment and field testing
Reducing energy consumption and enhancing safety of vehicles
Wireless in–car networks
Data collection and dissemination methods
Mobility and handover issues
Safety and driver assistance applications
UAV
Underwater communications
Autonomous cooperative driving
Social networks
Internet of vehicles
Standardization of protocols.