一种生物仿生孢子纳米平台,可增强化学动力疗法和细菌介导的抗肿瘤免疫力,从而实现癌症的协同治疗

IF 10.7 1区 医学 Q1 PHARMACOLOGY & PHARMACY Asian Journal of Pharmaceutical Sciences Pub Date : 2024-06-01 DOI:10.1016/j.ajps.2024.100912
Cuixia Zheng , Lingling Sun , Hongjuan Zhao , Mengya Niu , Dandan Zhang , Xinxin Liu , Qingling Song , Weijie Zhong , Baojin Wang , Yun Zhang , Lei Wang
{"title":"一种生物仿生孢子纳米平台,可增强化学动力疗法和细菌介导的抗肿瘤免疫力,从而实现癌症的协同治疗","authors":"Cuixia Zheng ,&nbsp;Lingling Sun ,&nbsp;Hongjuan Zhao ,&nbsp;Mengya Niu ,&nbsp;Dandan Zhang ,&nbsp;Xinxin Liu ,&nbsp;Qingling Song ,&nbsp;Weijie Zhong ,&nbsp;Baojin Wang ,&nbsp;Yun Zhang ,&nbsp;Lei Wang","doi":"10.1016/j.ajps.2024.100912","DOIUrl":null,"url":null,"abstract":"<div><p>Bacterial-based antitumor immunity has become a promising strategy to activate the immune system for fighting cancer. However, the potential application of bacterial therapy is hindered by the presence of instability and susceptibility to infections within bacterial populations. Furthermore, monotherapy is ineffective in completely eliminating complex cancer with multiple contributing factors. In this study, based on our discovery that spore shell (SS) of <em>Bacillus coagulans</em> exhibits excellent tumor-targeting ability and adjuvant activity, we develop a biomimetic spore nanoplatform to boost bacteria-mediated antitumor therapy, chemodynamic therapy and antitumor immunity for synergistic cancer treatment. In detail, SS is separated from probiotic spores and then attached to the surface of liposome (Lipo) that was loaded with hemoglobin (Hb), glucose oxidase (GOx) and JQ1 to construct SS@Lipo/Hb/GOx/JQ1. In tumor tissue, highly toxic hydroxyl radicals (•OH) are generated via sequential catalytic reactions: GOx catalyzing glucose into H<sub>2</sub>O<sub>2</sub> and Fe<sup>2+</sup> in Hb decomposing H<sub>2</sub>O<sub>2</sub> into •OH. The combination of •OH and SS adjuvant can improve tumor immunogenicity and activate immune system. Meanwhile, JQ1-mediated down-regulation of PD-L1 and Hb-induced hypoxia alleviation synergistically reshape immunosuppressive tumor microenvironment and potentiate immune response. In this manner, SS@Lipo/Hb/GOx/JQ1 significantly suppresses tumor growth and metastasis. To summarize, the nanoplatform represents an optimum strategy to potentiate bacteria-based cancer immunotherapy.</p></div>","PeriodicalId":8539,"journal":{"name":"Asian Journal of Pharmaceutical Sciences","volume":"19 3","pages":"Article 100912"},"PeriodicalIF":10.7000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1818087624000291/pdfft?md5=6d76e9f0ffce2ff30af602552971af0c&pid=1-s2.0-S1818087624000291-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A biomimetic spore nanoplatform for boosting chemodynamic therapy and bacteria-mediated antitumor immunity for synergistic cancer treatment\",\"authors\":\"Cuixia Zheng ,&nbsp;Lingling Sun ,&nbsp;Hongjuan Zhao ,&nbsp;Mengya Niu ,&nbsp;Dandan Zhang ,&nbsp;Xinxin Liu ,&nbsp;Qingling Song ,&nbsp;Weijie Zhong ,&nbsp;Baojin Wang ,&nbsp;Yun Zhang ,&nbsp;Lei Wang\",\"doi\":\"10.1016/j.ajps.2024.100912\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Bacterial-based antitumor immunity has become a promising strategy to activate the immune system for fighting cancer. However, the potential application of bacterial therapy is hindered by the presence of instability and susceptibility to infections within bacterial populations. Furthermore, monotherapy is ineffective in completely eliminating complex cancer with multiple contributing factors. In this study, based on our discovery that spore shell (SS) of <em>Bacillus coagulans</em> exhibits excellent tumor-targeting ability and adjuvant activity, we develop a biomimetic spore nanoplatform to boost bacteria-mediated antitumor therapy, chemodynamic therapy and antitumor immunity for synergistic cancer treatment. In detail, SS is separated from probiotic spores and then attached to the surface of liposome (Lipo) that was loaded with hemoglobin (Hb), glucose oxidase (GOx) and JQ1 to construct SS@Lipo/Hb/GOx/JQ1. In tumor tissue, highly toxic hydroxyl radicals (•OH) are generated via sequential catalytic reactions: GOx catalyzing glucose into H<sub>2</sub>O<sub>2</sub> and Fe<sup>2+</sup> in Hb decomposing H<sub>2</sub>O<sub>2</sub> into •OH. The combination of •OH and SS adjuvant can improve tumor immunogenicity and activate immune system. Meanwhile, JQ1-mediated down-regulation of PD-L1 and Hb-induced hypoxia alleviation synergistically reshape immunosuppressive tumor microenvironment and potentiate immune response. In this manner, SS@Lipo/Hb/GOx/JQ1 significantly suppresses tumor growth and metastasis. To summarize, the nanoplatform represents an optimum strategy to potentiate bacteria-based cancer immunotherapy.</p></div>\",\"PeriodicalId\":8539,\"journal\":{\"name\":\"Asian Journal of Pharmaceutical Sciences\",\"volume\":\"19 3\",\"pages\":\"Article 100912\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1818087624000291/pdfft?md5=6d76e9f0ffce2ff30af602552971af0c&pid=1-s2.0-S1818087624000291-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Journal of Pharmaceutical Sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1818087624000291\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Pharmaceutical Sciences","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1818087624000291","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

以细菌为基础的抗肿瘤免疫已成为激活免疫系统抗击癌症的一种前景广阔的策略。然而,细菌群的不稳定性和易感染性阻碍了细菌疗法的潜在应用。此外,单一疗法无法彻底消除具有多种诱因的复杂癌症。在本研究中,我们发现凝结芽孢杆菌的孢子壳(SS)具有出色的肿瘤靶向能力和辅助活性,基于这一发现,我们开发了一种仿生孢子纳米平台,以促进细菌介导的抗肿瘤治疗、化学动力治疗和抗肿瘤免疫,从而实现协同癌症治疗。具体来说,将 SS 从益生菌孢子中分离出来,然后附着在装有血红蛋白(Hb)、葡萄糖氧化酶(GOx)和 JQ1 的脂质体(Lipo)表面,构建 SS@Lipo/Hb/GOx/JQ1。在肿瘤组织中,剧毒的羟自由基(-OH)通过连续的催化反应生成:GOx 将葡萄糖催化成 H2O2,Hb 中的 Fe2+ 将 H2O2 分解成 -OH。-OH与SS佐剂结合可提高肿瘤免疫原性,激活免疫系统。同时,JQ1 介导的 PD-L1 下调与 Hb 诱导的缺氧缓解协同重塑免疫抑制性肿瘤微环境,增强免疫反应。因此,SS@Lipo/Hb/GOx/JQ1 能显著抑制肿瘤的生长和转移。总之,该纳米平台是增强基于细菌的癌症免疫疗法的最佳策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A biomimetic spore nanoplatform for boosting chemodynamic therapy and bacteria-mediated antitumor immunity for synergistic cancer treatment

Bacterial-based antitumor immunity has become a promising strategy to activate the immune system for fighting cancer. However, the potential application of bacterial therapy is hindered by the presence of instability and susceptibility to infections within bacterial populations. Furthermore, monotherapy is ineffective in completely eliminating complex cancer with multiple contributing factors. In this study, based on our discovery that spore shell (SS) of Bacillus coagulans exhibits excellent tumor-targeting ability and adjuvant activity, we develop a biomimetic spore nanoplatform to boost bacteria-mediated antitumor therapy, chemodynamic therapy and antitumor immunity for synergistic cancer treatment. In detail, SS is separated from probiotic spores and then attached to the surface of liposome (Lipo) that was loaded with hemoglobin (Hb), glucose oxidase (GOx) and JQ1 to construct SS@Lipo/Hb/GOx/JQ1. In tumor tissue, highly toxic hydroxyl radicals (•OH) are generated via sequential catalytic reactions: GOx catalyzing glucose into H2O2 and Fe2+ in Hb decomposing H2O2 into •OH. The combination of •OH and SS adjuvant can improve tumor immunogenicity and activate immune system. Meanwhile, JQ1-mediated down-regulation of PD-L1 and Hb-induced hypoxia alleviation synergistically reshape immunosuppressive tumor microenvironment and potentiate immune response. In this manner, SS@Lipo/Hb/GOx/JQ1 significantly suppresses tumor growth and metastasis. To summarize, the nanoplatform represents an optimum strategy to potentiate bacteria-based cancer immunotherapy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Asian Journal of Pharmaceutical Sciences
Asian Journal of Pharmaceutical Sciences Pharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
18.30
自引率
2.90%
发文量
11
审稿时长
14 days
期刊介绍: The Asian Journal of Pharmaceutical Sciences (AJPS) serves as the official journal of the Asian Federation for Pharmaceutical Sciences (AFPS). Recognized by the Science Citation Index Expanded (SCIE), AJPS offers a platform for the reporting of advancements, production methodologies, technologies, initiatives, and the practical application of scientific knowledge in the field of pharmaceutics. The journal covers a wide range of topics including but not limited to controlled drug release systems, drug targeting, physical pharmacy, pharmacodynamics, pharmacokinetics, pharmacogenomics, biopharmaceutics, drug and prodrug design, pharmaceutical analysis, drug stability, quality control, pharmaceutical engineering, and material sciences.
期刊最新文献
Extracellular vesicle-functionalized bioactive scaffolds for bone regeneration Recent advances in spatio-temporally controllable systems for management of glioma Deep near infrared light-excited stable synergistic photodynamic and photothermal therapies based on P-IR890 nano-photosensitizer constructed via a non-cyanine dye Electrostatic spraying for fine-tuning particle dimensions to enhance oral bioavailability of poorly water-soluble drugs Metal-organic frameworks in oral drug delivery
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1