Marina Terlau , Axel von Freyberg , Dirk Stöbener , Andreas Fischer
{"title":"利用阴影成像的光学工具挠度测量方法","authors":"Marina Terlau , Axel von Freyberg , Dirk Stöbener , Andreas Fischer","doi":"10.1016/j.measen.2024.101162","DOIUrl":null,"url":null,"abstract":"<div><p>In incremental sheet forming, geometrical deviations occur due to deflections of the forming stylus. To compensate the deviations, a non-contact in-process tool deflection measurement is required that is capable of measuring the tool tip position with a measurement uncertainty of 15 μm in a volume of 2.0 m × 1.0 m × 0.2 m. For this purpose, an optical multi-sensor system is designed. Each sensor evaluates lateral shift and magnification of the shadow cast from the LED attached close to the tool tip, to enable measuring the lateral and axial tool tip position component, respectively. The experimental validation shows that the sensing principle is sufficiently robust regarding ambient light. As a result, despite a remaining systematic error after calibration that dominates the uncertainty, the measurement requirements are fulfilled by a single sensor regarding the lateral position component. For the axial position component, a triangulation with two sensors is necessary.</p></div>","PeriodicalId":34311,"journal":{"name":"Measurement Sensors","volume":"33 ","pages":"Article 101162"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2665917424001387/pdfft?md5=87e4888e7d765d06854a45df15f7ffa9&pid=1-s2.0-S2665917424001387-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Optical tool deflection measurement approach using shadow imaging\",\"authors\":\"Marina Terlau , Axel von Freyberg , Dirk Stöbener , Andreas Fischer\",\"doi\":\"10.1016/j.measen.2024.101162\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In incremental sheet forming, geometrical deviations occur due to deflections of the forming stylus. To compensate the deviations, a non-contact in-process tool deflection measurement is required that is capable of measuring the tool tip position with a measurement uncertainty of 15 μm in a volume of 2.0 m × 1.0 m × 0.2 m. For this purpose, an optical multi-sensor system is designed. Each sensor evaluates lateral shift and magnification of the shadow cast from the LED attached close to the tool tip, to enable measuring the lateral and axial tool tip position component, respectively. The experimental validation shows that the sensing principle is sufficiently robust regarding ambient light. As a result, despite a remaining systematic error after calibration that dominates the uncertainty, the measurement requirements are fulfilled by a single sensor regarding the lateral position component. For the axial position component, a triangulation with two sensors is necessary.</p></div>\",\"PeriodicalId\":34311,\"journal\":{\"name\":\"Measurement Sensors\",\"volume\":\"33 \",\"pages\":\"Article 101162\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2665917424001387/pdfft?md5=87e4888e7d765d06854a45df15f7ffa9&pid=1-s2.0-S2665917424001387-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Measurement Sensors\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2665917424001387\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement Sensors","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2665917424001387","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
摘要
在增量式板材成形过程中,成形测针的偏移会导致几何偏差。为了补偿这些偏差,需要一种非接触式过程中工具偏差测量方法,能够在 2.0 m × 1.0 m × 0.2 m 的空间内测量工具尖端位置,测量不确定度为 15 μm。每个传感器都对靠近刀尖的 LED 所投阴影的横向移动和放大进行评估,以分别测量刀尖位置的横向和轴向分量。实验验证表明,传感原理对环境光具有足够的稳定性。因此,尽管校准后的系统误差仍占不确定性的主要部分,但单个传感器就能满足横向位置分量的测量要求。对于轴向位置分量,则需要使用两个传感器进行三角测量。
Optical tool deflection measurement approach using shadow imaging
In incremental sheet forming, geometrical deviations occur due to deflections of the forming stylus. To compensate the deviations, a non-contact in-process tool deflection measurement is required that is capable of measuring the tool tip position with a measurement uncertainty of 15 μm in a volume of 2.0 m × 1.0 m × 0.2 m. For this purpose, an optical multi-sensor system is designed. Each sensor evaluates lateral shift and magnification of the shadow cast from the LED attached close to the tool tip, to enable measuring the lateral and axial tool tip position component, respectively. The experimental validation shows that the sensing principle is sufficiently robust regarding ambient light. As a result, despite a remaining systematic error after calibration that dominates the uncertainty, the measurement requirements are fulfilled by a single sensor regarding the lateral position component. For the axial position component, a triangulation with two sensors is necessary.