在三种热/重力调制条件下研究封闭在赫勒-肖池内的磁对流纳米液体的热不稳定性

IF 2.7 Q3 NANOSCIENCE & NANOTECHNOLOGY Journal of Nanofluids Pub Date : 2024-04-01 DOI:10.1166/jon.2024.2112
S. Rai, B. S. Bhadauria, Anish Kumar, Awanish Kumar
{"title":"在三种热/重力调制条件下研究封闭在赫勒-肖池内的磁对流纳米液体的热不稳定性","authors":"S. Rai, B. S. Bhadauria, Anish Kumar, Awanish Kumar","doi":"10.1166/jon.2024.2112","DOIUrl":null,"url":null,"abstract":"In the present paper, we investigate a thermal instability of magneto-convection in an electrically conducting nanoliquid confined within Hele-Shaw cell, subjected to an applied time-periodic boundary thermal (ATBT) or gravitational modulation (ATGM), and surrounded by a constant vertical\n magnetic field. A steady portion and a time-dependent oscillatory portion constitute the temperature gradient seen between liquid layer’s walls in the context of ATBT. In this scenario, both walls’ temperatures are modulated. The liquid layer oscillation can be used to realise\n the externally applied time periodic component of the gravity field that is present in the ATGM problem. The perturbation is described in terms of the power series of the assumed-small convective amplitude. The impact of modulations on heat/mass transfer are examined utilising Ginzburg-Landau\n (GBL) approach. The impact of different parameters on the transportation of mass and heat is also explored. Additionally, we observe that gravitational modulation is very much effective than thermal modulation. Lewis-number, modified-diffusivity ratio and concentration Rayleigh-number increase\n heat and mass transport in the system.","PeriodicalId":47161,"journal":{"name":"Journal of Nanofluids","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study of Thermal Instability in Magneto-Convection Nanoliquid Confined within Hele-Shaw Cell Under Three Types of Thermal/Gravity Modulation\",\"authors\":\"S. Rai, B. S. Bhadauria, Anish Kumar, Awanish Kumar\",\"doi\":\"10.1166/jon.2024.2112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present paper, we investigate a thermal instability of magneto-convection in an electrically conducting nanoliquid confined within Hele-Shaw cell, subjected to an applied time-periodic boundary thermal (ATBT) or gravitational modulation (ATGM), and surrounded by a constant vertical\\n magnetic field. A steady portion and a time-dependent oscillatory portion constitute the temperature gradient seen between liquid layer’s walls in the context of ATBT. In this scenario, both walls’ temperatures are modulated. The liquid layer oscillation can be used to realise\\n the externally applied time periodic component of the gravity field that is present in the ATGM problem. The perturbation is described in terms of the power series of the assumed-small convective amplitude. The impact of modulations on heat/mass transfer are examined utilising Ginzburg-Landau\\n (GBL) approach. The impact of different parameters on the transportation of mass and heat is also explored. Additionally, we observe that gravitational modulation is very much effective than thermal modulation. Lewis-number, modified-diffusivity ratio and concentration Rayleigh-number increase\\n heat and mass transport in the system.\",\"PeriodicalId\":47161,\"journal\":{\"name\":\"Journal of Nanofluids\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nanofluids\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1166/jon.2024.2112\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanofluids","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1166/jon.2024.2112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们研究了封闭在 Hele-Shaw 小室中的导电纳米液体的磁对流热不稳定性,该液体受到外加的时周期边界热(ATBT)或重力调制(ATGM)的影响,周围是恒定的垂直磁场。在 ATBT 情况下,液层壁之间的温度梯度由稳定部分和随时间变化的振荡部分构成。在这种情况下,两层壁的温度都受到调制。液层振荡可用于实现 ATGM 问题中存在的重力场的外加时间周期分量。扰动用假定小对流振幅的幂级数来描述。利用金兹堡-朗道(GBL)方法研究了调制对热量/质量传递的影响。我们还探讨了不同参数对质量和热量传输的影响。此外,我们还观察到重力调制比热调制更为有效。路易斯数、修正扩散比和浓度雷利数增加了系统中的热量和质量传输。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Study of Thermal Instability in Magneto-Convection Nanoliquid Confined within Hele-Shaw Cell Under Three Types of Thermal/Gravity Modulation
In the present paper, we investigate a thermal instability of magneto-convection in an electrically conducting nanoliquid confined within Hele-Shaw cell, subjected to an applied time-periodic boundary thermal (ATBT) or gravitational modulation (ATGM), and surrounded by a constant vertical magnetic field. A steady portion and a time-dependent oscillatory portion constitute the temperature gradient seen between liquid layer’s walls in the context of ATBT. In this scenario, both walls’ temperatures are modulated. The liquid layer oscillation can be used to realise the externally applied time periodic component of the gravity field that is present in the ATGM problem. The perturbation is described in terms of the power series of the assumed-small convective amplitude. The impact of modulations on heat/mass transfer are examined utilising Ginzburg-Landau (GBL) approach. The impact of different parameters on the transportation of mass and heat is also explored. Additionally, we observe that gravitational modulation is very much effective than thermal modulation. Lewis-number, modified-diffusivity ratio and concentration Rayleigh-number increase heat and mass transport in the system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Nanofluids
Journal of Nanofluids NANOSCIENCE & NANOTECHNOLOGY-
自引率
14.60%
发文量
89
期刊介绍: Journal of Nanofluids (JON) is an international multidisciplinary peer-reviewed journal covering a wide range of research topics in the field of nanofluids and fluid science. It is an ideal and unique reference source for scientists and engineers working in this important and emerging research field of science, engineering and technology. The journal publishes full research papers, review articles with author''s photo and short biography, and communications of important new findings encompassing the fundamental and applied research in all aspects of science and engineering of nanofluids and fluid science related developing technologies.
期刊最新文献
Heat Generation/Absorption in MHD Double Diffusive Mixed Convection of Different Nanofluids in a Trapezoidal Enclosure Numerical Investigation of Hybrid Nanofluid Natural Convection and Entropy Generation in a Corrugated Enclosure with an Inner Conducting Block Magnetohydrodynamic Free Convective Flow in a Vertical Microchannel with Heat Sink Unsteady Natural Convection of Dusty Hybrid Nanofluid Flow Between a Wavy and Circular Cylinder with Heat Generation Synergistic Heat Transfer in Enclosures: A Hybrid Nanofluids Review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1