Stefan Scheuermann , Sarah Hücker , Annika Engel , Nicole Ludwig , Philipp Lebhardt , Jens Langejürgen , Stefan Kirsch
{"title":"从存档组织中生成用于 miRNA 测序的无酶单细胞悬浮液的新方法。","authors":"Stefan Scheuermann , Sarah Hücker , Annika Engel , Nicole Ludwig , Philipp Lebhardt , Jens Langejürgen , Stefan Kirsch","doi":"10.1016/j.slast.2024.100133","DOIUrl":null,"url":null,"abstract":"<div><p>Obtaining high-quality omics data at the single-cell level from archived human tissue samples is crucial for gaining insights into cellular heterogeneity and pushing the field of personalized medicine forward. In this technical brief we present a comprehensive methodological framework for the efficient enzyme-free preparation of tissue-derived single cell suspensions and their conversion into single-cell miRNA sequencing libraries. The resulting data from this study have the potential to deepen our understanding of miRNA expression at the single-cell level and its relevance in the context of the examined tissues. The workflow encompasses tissue collection, RNALater immersion, storage, thawing, TissueGrinder-mediated dissociation, miRNA lysis, library preparation, sequencing, and data analysis. Quality control measures ensure reliable miRNA data, with specific attention to sample quality. The UMAP analysis reveals tissue-specific cell clustering, while miRNA diversity reflects tissue variations. The presented workflow effectively processes preserved tissues, extending opportunities for retrospective analysis and biobank utilization.</p></div>","PeriodicalId":54248,"journal":{"name":"SLAS Technology","volume":"29 3","pages":"Article 100133"},"PeriodicalIF":2.5000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2472630324000153/pdfft?md5=7edbaf4bae586671059565f9e8ad4e2a&pid=1-s2.0-S2472630324000153-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A novel approach to generate enzyme-free single cell suspensions from archived tissues for miRNA sequencing\",\"authors\":\"Stefan Scheuermann , Sarah Hücker , Annika Engel , Nicole Ludwig , Philipp Lebhardt , Jens Langejürgen , Stefan Kirsch\",\"doi\":\"10.1016/j.slast.2024.100133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Obtaining high-quality omics data at the single-cell level from archived human tissue samples is crucial for gaining insights into cellular heterogeneity and pushing the field of personalized medicine forward. In this technical brief we present a comprehensive methodological framework for the efficient enzyme-free preparation of tissue-derived single cell suspensions and their conversion into single-cell miRNA sequencing libraries. The resulting data from this study have the potential to deepen our understanding of miRNA expression at the single-cell level and its relevance in the context of the examined tissues. The workflow encompasses tissue collection, RNALater immersion, storage, thawing, TissueGrinder-mediated dissociation, miRNA lysis, library preparation, sequencing, and data analysis. Quality control measures ensure reliable miRNA data, with specific attention to sample quality. The UMAP analysis reveals tissue-specific cell clustering, while miRNA diversity reflects tissue variations. The presented workflow effectively processes preserved tissues, extending opportunities for retrospective analysis and biobank utilization.</p></div>\",\"PeriodicalId\":54248,\"journal\":{\"name\":\"SLAS Technology\",\"volume\":\"29 3\",\"pages\":\"Article 100133\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2472630324000153/pdfft?md5=7edbaf4bae586671059565f9e8ad4e2a&pid=1-s2.0-S2472630324000153-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SLAS Technology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2472630324000153\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SLAS Technology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2472630324000153","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
A novel approach to generate enzyme-free single cell suspensions from archived tissues for miRNA sequencing
Obtaining high-quality omics data at the single-cell level from archived human tissue samples is crucial for gaining insights into cellular heterogeneity and pushing the field of personalized medicine forward. In this technical brief we present a comprehensive methodological framework for the efficient enzyme-free preparation of tissue-derived single cell suspensions and their conversion into single-cell miRNA sequencing libraries. The resulting data from this study have the potential to deepen our understanding of miRNA expression at the single-cell level and its relevance in the context of the examined tissues. The workflow encompasses tissue collection, RNALater immersion, storage, thawing, TissueGrinder-mediated dissociation, miRNA lysis, library preparation, sequencing, and data analysis. Quality control measures ensure reliable miRNA data, with specific attention to sample quality. The UMAP analysis reveals tissue-specific cell clustering, while miRNA diversity reflects tissue variations. The presented workflow effectively processes preserved tissues, extending opportunities for retrospective analysis and biobank utilization.
期刊介绍:
SLAS Technology emphasizes scientific and technical advances that enable and improve life sciences research and development; drug-delivery; diagnostics; biomedical and molecular imaging; and personalized and precision medicine. This includes high-throughput and other laboratory automation technologies; micro/nanotechnologies; analytical, separation and quantitative techniques; synthetic chemistry and biology; informatics (data analysis, statistics, bio, genomic and chemoinformatics); and more.