Bolong Liu , Bo Li , Liang Zhang , Rui Huang , Huicai Gao , Shilin Luo , Tao Wang
{"title":"在不同节理剪切强度的岩体中进行隧道挖掘机挖掘时圆盘铣刀诱发岩石破碎的机理","authors":"Bolong Liu , Bo Li , Liang Zhang , Rui Huang , Huicai Gao , Shilin Luo , Tao Wang","doi":"10.1016/j.undsp.2023.12.006","DOIUrl":null,"url":null,"abstract":"<div><p>When tunnel boring machines (TBMs) excavate through jointed rock masses, the cutting efficiency is strongly affected by the shear strength of joints, the mechanism of which, however, remains poorly understood. In this study, a series of disc-cutter indentation tests were conducted on granite rock mass specimens with different joint shear strengths. During the indentation, the cracking process was recorded by a digital image correlation (DIC) system. The deformation and strength of specimens, cracking behavior, rock breakage mode and cutting efficiency were quantitatively investigated. In addition, to investigate the combined effects of joint shear strength, orientation and spacing on the rock breakage mechanism, numerical rock mass models were established based on a particle flow code PFC2D. Experimental results reveal that the cracking of primary and secondary cracks changes from the mixed shear-tensile to tensile mode in the initial stage, while the joint shear strength does not affect the cracking mode in the subsequent propagation process. The rock breakage mode is classified to an internal block breakage mode, a cross-joint breakage mode and a cutters-dependent breakage mode. The cross-joint breakage mode is optimal for improving the cutting efficiency. Numerical simulation results reveal that the increase in the joint shear strength changes the internal block breakage mode to cross-joint breakage mode for rock masses of particular ranges of joint orientation and spacing. These findings provide basis for improving the TBM cutting efficiency through jointed rock masses.</p></div>","PeriodicalId":48505,"journal":{"name":"Underground Space","volume":"19 ","pages":"Pages 119-137"},"PeriodicalIF":8.2000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2467967424000436/pdfft?md5=dbf65fcbce77b037e7679c24b5051bf6&pid=1-s2.0-S2467967424000436-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Disc-cutter induced rock breakage mechanism for TBM excavation in rock masses with different joint shear strengths\",\"authors\":\"Bolong Liu , Bo Li , Liang Zhang , Rui Huang , Huicai Gao , Shilin Luo , Tao Wang\",\"doi\":\"10.1016/j.undsp.2023.12.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>When tunnel boring machines (TBMs) excavate through jointed rock masses, the cutting efficiency is strongly affected by the shear strength of joints, the mechanism of which, however, remains poorly understood. In this study, a series of disc-cutter indentation tests were conducted on granite rock mass specimens with different joint shear strengths. During the indentation, the cracking process was recorded by a digital image correlation (DIC) system. The deformation and strength of specimens, cracking behavior, rock breakage mode and cutting efficiency were quantitatively investigated. In addition, to investigate the combined effects of joint shear strength, orientation and spacing on the rock breakage mechanism, numerical rock mass models were established based on a particle flow code PFC2D. Experimental results reveal that the cracking of primary and secondary cracks changes from the mixed shear-tensile to tensile mode in the initial stage, while the joint shear strength does not affect the cracking mode in the subsequent propagation process. The rock breakage mode is classified to an internal block breakage mode, a cross-joint breakage mode and a cutters-dependent breakage mode. The cross-joint breakage mode is optimal for improving the cutting efficiency. Numerical simulation results reveal that the increase in the joint shear strength changes the internal block breakage mode to cross-joint breakage mode for rock masses of particular ranges of joint orientation and spacing. These findings provide basis for improving the TBM cutting efficiency through jointed rock masses.</p></div>\",\"PeriodicalId\":48505,\"journal\":{\"name\":\"Underground Space\",\"volume\":\"19 \",\"pages\":\"Pages 119-137\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2467967424000436/pdfft?md5=dbf65fcbce77b037e7679c24b5051bf6&pid=1-s2.0-S2467967424000436-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Underground Space\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2467967424000436\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Underground Space","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2467967424000436","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Disc-cutter induced rock breakage mechanism for TBM excavation in rock masses with different joint shear strengths
When tunnel boring machines (TBMs) excavate through jointed rock masses, the cutting efficiency is strongly affected by the shear strength of joints, the mechanism of which, however, remains poorly understood. In this study, a series of disc-cutter indentation tests were conducted on granite rock mass specimens with different joint shear strengths. During the indentation, the cracking process was recorded by a digital image correlation (DIC) system. The deformation and strength of specimens, cracking behavior, rock breakage mode and cutting efficiency were quantitatively investigated. In addition, to investigate the combined effects of joint shear strength, orientation and spacing on the rock breakage mechanism, numerical rock mass models were established based on a particle flow code PFC2D. Experimental results reveal that the cracking of primary and secondary cracks changes from the mixed shear-tensile to tensile mode in the initial stage, while the joint shear strength does not affect the cracking mode in the subsequent propagation process. The rock breakage mode is classified to an internal block breakage mode, a cross-joint breakage mode and a cutters-dependent breakage mode. The cross-joint breakage mode is optimal for improving the cutting efficiency. Numerical simulation results reveal that the increase in the joint shear strength changes the internal block breakage mode to cross-joint breakage mode for rock masses of particular ranges of joint orientation and spacing. These findings provide basis for improving the TBM cutting efficiency through jointed rock masses.
期刊介绍:
Underground Space is an open access international journal without article processing charges (APC) committed to serving as a scientific forum for researchers and practitioners in the field of underground engineering. The journal welcomes manuscripts that deal with original theories, methods, technologies, and important applications throughout the life-cycle of underground projects, including planning, design, operation and maintenance, disaster prevention, and demolition. The journal is particularly interested in manuscripts related to the latest development of smart underground engineering from the perspectives of resilience, resources saving, environmental friendliness, humanity, and artificial intelligence. The manuscripts are expected to have significant innovation and potential impact in the field of underground engineering, and should have clear association with or application in underground projects.