高性能过氧化物太阳能电池的界面工程特性综述

George G. Njema, Joshua K. Kibet, Silas M. Ngari
{"title":"高性能过氧化物太阳能电池的界面工程特性综述","authors":"George G. Njema,&nbsp;Joshua K. Kibet,&nbsp;Silas M. Ngari","doi":"10.1016/j.meaene.2024.100005","DOIUrl":null,"url":null,"abstract":"<div><p>The use of perovskite solar cells (PSCs) holds immense promise in electricity generation due to their high efficiency and potential for cost-effective production. However, their practical application faces limitations due to issues like sensitivity to moisture, ion migration, and interface defects, affecting their stability and lifespan. This work delves into the critical role of interface materials in enhancing the stability and effectiveness of perovskite solar cells. Techniques such as passivation and encapsulation designed to mitigate these challenges are comprehensively explored. The study investigates the root causes of perovskite deterioration and how engineering interfaces can bolster the durability of these devices. Various methods for passivation, including surface modification, self-assembled monolayers, and utilizing materials with wide band gaps, are scrutinized for their ability to reduce defects and control degradation problems. Furthermore, strategies involving barrier films, polymers, and hybrid inorganic-organic materials are evaluated for their potential to shield perovskite layers from moisture and environmental influences, thereby prolonging the devices' lifetime. The interconnected nature of passivation layers, encapsulation techniques, and their suitability for large-scale manufacturing processes are presented. The analysis outlines the challenges and opportunities in developing interface materials for perovskite solar cells, considering the trade-offs between device performance, stability, and affordability. Accordingly, potential future pathways and emerging trends in interface engineering for the next generation of perovskite solar cells are suggested, aimed at propelling these devices towards commercial success by achieving high efficiency and long-term stability.</p></div>","PeriodicalId":100897,"journal":{"name":"Measurement: Energy","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2950345024000058/pdfft?md5=61fd0d1273fb79b15824a2d1b66b119b&pid=1-s2.0-S2950345024000058-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A review of interface engineering characteristics for high performance perovskite solar cells\",\"authors\":\"George G. Njema,&nbsp;Joshua K. Kibet,&nbsp;Silas M. Ngari\",\"doi\":\"10.1016/j.meaene.2024.100005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The use of perovskite solar cells (PSCs) holds immense promise in electricity generation due to their high efficiency and potential for cost-effective production. However, their practical application faces limitations due to issues like sensitivity to moisture, ion migration, and interface defects, affecting their stability and lifespan. This work delves into the critical role of interface materials in enhancing the stability and effectiveness of perovskite solar cells. Techniques such as passivation and encapsulation designed to mitigate these challenges are comprehensively explored. The study investigates the root causes of perovskite deterioration and how engineering interfaces can bolster the durability of these devices. Various methods for passivation, including surface modification, self-assembled monolayers, and utilizing materials with wide band gaps, are scrutinized for their ability to reduce defects and control degradation problems. Furthermore, strategies involving barrier films, polymers, and hybrid inorganic-organic materials are evaluated for their potential to shield perovskite layers from moisture and environmental influences, thereby prolonging the devices' lifetime. The interconnected nature of passivation layers, encapsulation techniques, and their suitability for large-scale manufacturing processes are presented. The analysis outlines the challenges and opportunities in developing interface materials for perovskite solar cells, considering the trade-offs between device performance, stability, and affordability. Accordingly, potential future pathways and emerging trends in interface engineering for the next generation of perovskite solar cells are suggested, aimed at propelling these devices towards commercial success by achieving high efficiency and long-term stability.</p></div>\",\"PeriodicalId\":100897,\"journal\":{\"name\":\"Measurement: Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2950345024000058/pdfft?md5=61fd0d1273fb79b15824a2d1b66b119b&pid=1-s2.0-S2950345024000058-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Measurement: Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2950345024000058\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement: Energy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2950345024000058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

过氧化物太阳能电池(PSCs)效率高,生产成本低廉,因此在发电领域大有可为。然而,由于对水分、离子迁移和界面缺陷的敏感性等问题,它们的实际应用面临着限制,影响了其稳定性和使用寿命。这项研究深入探讨了界面材料在提高过氧化物太阳能电池的稳定性和有效性方面的关键作用。全面探讨了旨在缓解这些挑战的钝化和封装等技术。研究调查了包晶石劣化的根本原因,以及工程界面如何提高这些设备的耐用性。研究仔细探讨了各种钝化方法,包括表面改性、自组装单层和利用具有宽带隙的材料,以确定这些方法是否能够减少缺陷和控制降解问题。此外,还对涉及阻挡膜、聚合物和无机-有机混合材料的策略进行了评估,以确定它们是否有可能使包晶石层免受湿气和环境影响,从而延长器件的使用寿命。报告介绍了钝化层、封装技术的相互关联性及其对大规模制造工艺的适用性。考虑到器件性能、稳定性和经济性之间的权衡,分析概述了开发包晶体太阳能电池界面材料所面临的挑战和机遇。据此,提出了下一代包晶体太阳能电池界面工程的潜在未来途径和新兴趋势,旨在通过实现高效率和长期稳定性,推动这些设备取得商业成功。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A review of interface engineering characteristics for high performance perovskite solar cells

The use of perovskite solar cells (PSCs) holds immense promise in electricity generation due to their high efficiency and potential for cost-effective production. However, their practical application faces limitations due to issues like sensitivity to moisture, ion migration, and interface defects, affecting their stability and lifespan. This work delves into the critical role of interface materials in enhancing the stability and effectiveness of perovskite solar cells. Techniques such as passivation and encapsulation designed to mitigate these challenges are comprehensively explored. The study investigates the root causes of perovskite deterioration and how engineering interfaces can bolster the durability of these devices. Various methods for passivation, including surface modification, self-assembled monolayers, and utilizing materials with wide band gaps, are scrutinized for their ability to reduce defects and control degradation problems. Furthermore, strategies involving barrier films, polymers, and hybrid inorganic-organic materials are evaluated for their potential to shield perovskite layers from moisture and environmental influences, thereby prolonging the devices' lifetime. The interconnected nature of passivation layers, encapsulation techniques, and their suitability for large-scale manufacturing processes are presented. The analysis outlines the challenges and opportunities in developing interface materials for perovskite solar cells, considering the trade-offs between device performance, stability, and affordability. Accordingly, potential future pathways and emerging trends in interface engineering for the next generation of perovskite solar cells are suggested, aimed at propelling these devices towards commercial success by achieving high efficiency and long-term stability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PMU-based voltage estimation and distributed generation effects in active distribution networks An optimization approach for enhancing energy efficiency, reducing CO2 emission, and improving lubrication reliability in roller bearings using ABC algorithm Analysis of transmission pathways of combustion-induced vibration in a diesel engine using wavelet cross-correlation analysis method Accelerated lithium-ion battery cycle lifetime testing by condition-based reference performance tests New parameters for the capacitive accelerometer to reduce its measurement error and power consumption
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1