Hua Fang , Ting Wu , Shutan Ma , Yuqing Miao , Xinming Wang
{"title":"作为大气芳香烃潜在来源的生物排放:从发生蓝藻水华的富营养化湖泊中获得的启示","authors":"Hua Fang , Ting Wu , Shutan Ma , Yuqing Miao , Xinming Wang","doi":"10.1016/j.jes.2024.04.011","DOIUrl":null,"url":null,"abstract":"<div><p>As important precursors of ozone (O<sub>3</sub>) and secondary organic aerosol (SOA), reactive aromatic hydrocarbons (AHs) have typically been classified as anthropogenic air pollutants. However, biogenic emission can also be a potential source of atmospheric AHs. Herein, field observations in a eutrophic lake were combined with laboratory incubation experiments to investigate the biogenic AH emission. Field work showed that the water-air fluxes of AHs measured at sites with high cyanobacteria abundance could reach an order of magnitude greater than those at sites with low cyanobacteria abundance, suggesting that cyanobacteria could be the important contributor to measured AHs. Laboratory incubation experiments further confirmed the AH emission of cyanobacteria and revealed that the emission could change significantly over the lifespan of cyanobacteria and varied to their growing conditions. By combining field observations and laboratory incubation experiments, it has been suggested that the emission of different AH species from cyanobacteria could be modulated by variable biogeochemical mechanisms and that the biochemical process of toluene could be different from that of other AHs. This study investigates AH emissions from inland aquatic ecosystem and suggests that biogenic emission could be a potential source of atmospheric AHs.</p></div>","PeriodicalId":15788,"journal":{"name":"Journal of Environmental Sciences-china","volume":"151 ","pages":"Pages 497-504"},"PeriodicalIF":5.9000,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biogenic emission as a potential source of atmospheric aromatic hydrocarbons: Insights from a cyanobacterial bloom-occurring eutrophic lake\",\"authors\":\"Hua Fang , Ting Wu , Shutan Ma , Yuqing Miao , Xinming Wang\",\"doi\":\"10.1016/j.jes.2024.04.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>As important precursors of ozone (O<sub>3</sub>) and secondary organic aerosol (SOA), reactive aromatic hydrocarbons (AHs) have typically been classified as anthropogenic air pollutants. However, biogenic emission can also be a potential source of atmospheric AHs. Herein, field observations in a eutrophic lake were combined with laboratory incubation experiments to investigate the biogenic AH emission. Field work showed that the water-air fluxes of AHs measured at sites with high cyanobacteria abundance could reach an order of magnitude greater than those at sites with low cyanobacteria abundance, suggesting that cyanobacteria could be the important contributor to measured AHs. Laboratory incubation experiments further confirmed the AH emission of cyanobacteria and revealed that the emission could change significantly over the lifespan of cyanobacteria and varied to their growing conditions. By combining field observations and laboratory incubation experiments, it has been suggested that the emission of different AH species from cyanobacteria could be modulated by variable biogeochemical mechanisms and that the biochemical process of toluene could be different from that of other AHs. This study investigates AH emissions from inland aquatic ecosystem and suggests that biogenic emission could be a potential source of atmospheric AHs.</p></div>\",\"PeriodicalId\":15788,\"journal\":{\"name\":\"Journal of Environmental Sciences-china\",\"volume\":\"151 \",\"pages\":\"Pages 497-504\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Environmental Sciences-china\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1001074224001876\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Sciences-china","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1001074224001876","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Biogenic emission as a potential source of atmospheric aromatic hydrocarbons: Insights from a cyanobacterial bloom-occurring eutrophic lake
As important precursors of ozone (O3) and secondary organic aerosol (SOA), reactive aromatic hydrocarbons (AHs) have typically been classified as anthropogenic air pollutants. However, biogenic emission can also be a potential source of atmospheric AHs. Herein, field observations in a eutrophic lake were combined with laboratory incubation experiments to investigate the biogenic AH emission. Field work showed that the water-air fluxes of AHs measured at sites with high cyanobacteria abundance could reach an order of magnitude greater than those at sites with low cyanobacteria abundance, suggesting that cyanobacteria could be the important contributor to measured AHs. Laboratory incubation experiments further confirmed the AH emission of cyanobacteria and revealed that the emission could change significantly over the lifespan of cyanobacteria and varied to their growing conditions. By combining field observations and laboratory incubation experiments, it has been suggested that the emission of different AH species from cyanobacteria could be modulated by variable biogeochemical mechanisms and that the biochemical process of toluene could be different from that of other AHs. This study investigates AH emissions from inland aquatic ecosystem and suggests that biogenic emission could be a potential source of atmospheric AHs.
期刊介绍:
The Journal of Environmental Sciences is an international journal started in 1989. The journal is devoted to publish original, peer-reviewed research papers on main aspects of environmental sciences, such as environmental chemistry, environmental biology, ecology, geosciences and environmental physics. Appropriate subjects include basic and applied research on atmospheric, terrestrial and aquatic environments, pollution control and abatement technology, conservation of natural resources, environmental health and toxicology. Announcements of international environmental science meetings and other recent information are also included.