Ari Gurel , Frédéric Avignon , Guillaume Wang , Stéphanie Lau , Jean-Yves Piquemal , Christian Perruchot , Delphine Schaming
{"title":"氮掺杂石墨烯量子点的电化学合成及其光催化氢进化应用","authors":"Ari Gurel , Frédéric Avignon , Guillaume Wang , Stéphanie Lau , Jean-Yves Piquemal , Christian Perruchot , Delphine Schaming","doi":"10.1016/j.cartre.2024.100354","DOIUrl":null,"url":null,"abstract":"<div><p>A very simple electrochemical top-down procedure was employed to obtain pure graphene quantum dots (GQDs) in water and using only graphite as carbonaceous precursor. The graphitic structure of the GQDs has been clearly observed by high-resolution transmission electronic microscopy (HRTEM). Then, the synthesis of N-doped GQDs was allowed by the addition of ammonia in the solution. The nitrogen doping was plainly evidenced by X-ray photoelectron (XPS) and Raman spectroscopies. The role of the electrolytic solution employed during the synthesis has been also discussed. Finally, these N-doped and non-doped GQDs were further used to prepare hybrids by grafting them onto ZnO semi-conductors, and their photocatalytic properties towards water-splitting were investigated. Interestingly, a very important enhancement of the amount of dihydrogen produced was observed with N-doped GQDs, compared to ZnO alone or to hybrids prepared with non-doped GQDs.</p></div>","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":"15 ","pages":"Article 100354"},"PeriodicalIF":3.1000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266705692400035X/pdfft?md5=cc99a46c9037eff8698c2409f91d7e24&pid=1-s2.0-S266705692400035X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Electrochemical synthesis of nitrogen-doped graphene quantum dots and their photocatalytic hydrogen evolution application\",\"authors\":\"Ari Gurel , Frédéric Avignon , Guillaume Wang , Stéphanie Lau , Jean-Yves Piquemal , Christian Perruchot , Delphine Schaming\",\"doi\":\"10.1016/j.cartre.2024.100354\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A very simple electrochemical top-down procedure was employed to obtain pure graphene quantum dots (GQDs) in water and using only graphite as carbonaceous precursor. The graphitic structure of the GQDs has been clearly observed by high-resolution transmission electronic microscopy (HRTEM). Then, the synthesis of N-doped GQDs was allowed by the addition of ammonia in the solution. The nitrogen doping was plainly evidenced by X-ray photoelectron (XPS) and Raman spectroscopies. The role of the electrolytic solution employed during the synthesis has been also discussed. Finally, these N-doped and non-doped GQDs were further used to prepare hybrids by grafting them onto ZnO semi-conductors, and their photocatalytic properties towards water-splitting were investigated. Interestingly, a very important enhancement of the amount of dihydrogen produced was observed with N-doped GQDs, compared to ZnO alone or to hybrids prepared with non-doped GQDs.</p></div>\",\"PeriodicalId\":52629,\"journal\":{\"name\":\"Carbon Trends\",\"volume\":\"15 \",\"pages\":\"Article 100354\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S266705692400035X/pdfft?md5=cc99a46c9037eff8698c2409f91d7e24&pid=1-s2.0-S266705692400035X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Trends\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S266705692400035X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Trends","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266705692400035X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
该研究采用了一种非常简单的电化学自上而下的程序,在水中仅使用石墨作为碳质前驱体就获得了纯石墨烯量子点(GQDs)。通过高分辨率透射电子显微镜(HRTEM)可以清楚地观察到 GQDs 的石墨结构。然后,在溶液中加入氨,合成了掺氮的 GQDs。X 射线光电子学(XPS)和拉曼光谱清楚地证明了氮的掺杂。此外,还讨论了合成过程中使用的电解溶液的作用。最后,通过将这些掺杂了 N 和未掺杂的 GQDs 接枝到 ZnO 半导体上,进一步制备了混合体,并研究了它们的光催化分水性能。有趣的是,与单独的氧化锌或用未掺杂的 GQDs 制备的混合体相比,掺杂 N 的 GQDs 产生的二氢量大大增加。
Electrochemical synthesis of nitrogen-doped graphene quantum dots and their photocatalytic hydrogen evolution application
A very simple electrochemical top-down procedure was employed to obtain pure graphene quantum dots (GQDs) in water and using only graphite as carbonaceous precursor. The graphitic structure of the GQDs has been clearly observed by high-resolution transmission electronic microscopy (HRTEM). Then, the synthesis of N-doped GQDs was allowed by the addition of ammonia in the solution. The nitrogen doping was plainly evidenced by X-ray photoelectron (XPS) and Raman spectroscopies. The role of the electrolytic solution employed during the synthesis has been also discussed. Finally, these N-doped and non-doped GQDs were further used to prepare hybrids by grafting them onto ZnO semi-conductors, and their photocatalytic properties towards water-splitting were investigated. Interestingly, a very important enhancement of the amount of dihydrogen produced was observed with N-doped GQDs, compared to ZnO alone or to hybrids prepared with non-doped GQDs.