Naila Marcuzzo , Crisleine P. Draszewski , Roger Wagner , Madison Willy Silva Cordeiro , Fernanda Castilhos , Flávio D. Mayer , Déborah Cristina Barcelos Flores , Flávia M.D. Nora , Ederson R. Abaide , Claudia S. Rosa
{"title":"利用连续超临界流体萃取和酶水解从橄榄渣中获取油和可发酵糖","authors":"Naila Marcuzzo , Crisleine P. Draszewski , Roger Wagner , Madison Willy Silva Cordeiro , Fernanda Castilhos , Flávio D. Mayer , Déborah Cristina Barcelos Flores , Flávia M.D. Nora , Ederson R. Abaide , Claudia S. Rosa","doi":"10.1016/j.supflu.2024.106288","DOIUrl":null,"url":null,"abstract":"<div><p>Olive pomace has high economic potential and the supercritical technology for extraction produces oil with potential use in the food and biofuels industries. The remaining solid can be used to obtain fermentable sugars from the hydrolysis. The present work aims to evaluate the effect of supercritical fluid extraction (SFE) of pomace olive oil at 60 and 40 °C and 18 and 22 MPa on oil yield and composition. Furthermore, use the remaining solid of SFE to obtain fermentable sugars from enzymatic hydrolysis. Kinetic curves were obtained for SFE, with the best oil yields 19.36 ± 2.43 wt% obtained at 40 °C / 22 MPa. The antioxidant activity was better for (60 °C / 22 MPa) presenting 137.87 ± 1.04 µmol TEAC / g am. dry. The highest yield of fermentable sugar (Y<sub>FS</sub>) was 41.02 ± 4.79 g defatted olive pomace (DOP) for 26 Filter Paper Unit (FPU) / 1% solid loading (CS).</p></div>","PeriodicalId":17078,"journal":{"name":"Journal of Supercritical Fluids","volume":"211 ","pages":"Article 106288"},"PeriodicalIF":3.4000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Obtaining oil and fermentable sugars from olive pomace using sequential supercritical fluid extraction and enzymatic hydrolysis\",\"authors\":\"Naila Marcuzzo , Crisleine P. Draszewski , Roger Wagner , Madison Willy Silva Cordeiro , Fernanda Castilhos , Flávio D. Mayer , Déborah Cristina Barcelos Flores , Flávia M.D. Nora , Ederson R. Abaide , Claudia S. Rosa\",\"doi\":\"10.1016/j.supflu.2024.106288\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Olive pomace has high economic potential and the supercritical technology for extraction produces oil with potential use in the food and biofuels industries. The remaining solid can be used to obtain fermentable sugars from the hydrolysis. The present work aims to evaluate the effect of supercritical fluid extraction (SFE) of pomace olive oil at 60 and 40 °C and 18 and 22 MPa on oil yield and composition. Furthermore, use the remaining solid of SFE to obtain fermentable sugars from enzymatic hydrolysis. Kinetic curves were obtained for SFE, with the best oil yields 19.36 ± 2.43 wt% obtained at 40 °C / 22 MPa. The antioxidant activity was better for (60 °C / 22 MPa) presenting 137.87 ± 1.04 µmol TEAC / g am. dry. The highest yield of fermentable sugar (Y<sub>FS</sub>) was 41.02 ± 4.79 g defatted olive pomace (DOP) for 26 Filter Paper Unit (FPU) / 1% solid loading (CS).</p></div>\",\"PeriodicalId\":17078,\"journal\":{\"name\":\"Journal of Supercritical Fluids\",\"volume\":\"211 \",\"pages\":\"Article 106288\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Supercritical Fluids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0896844624001232\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Supercritical Fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0896844624001232","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Obtaining oil and fermentable sugars from olive pomace using sequential supercritical fluid extraction and enzymatic hydrolysis
Olive pomace has high economic potential and the supercritical technology for extraction produces oil with potential use in the food and biofuels industries. The remaining solid can be used to obtain fermentable sugars from the hydrolysis. The present work aims to evaluate the effect of supercritical fluid extraction (SFE) of pomace olive oil at 60 and 40 °C and 18 and 22 MPa on oil yield and composition. Furthermore, use the remaining solid of SFE to obtain fermentable sugars from enzymatic hydrolysis. Kinetic curves were obtained for SFE, with the best oil yields 19.36 ± 2.43 wt% obtained at 40 °C / 22 MPa. The antioxidant activity was better for (60 °C / 22 MPa) presenting 137.87 ± 1.04 µmol TEAC / g am. dry. The highest yield of fermentable sugar (YFS) was 41.02 ± 4.79 g defatted olive pomace (DOP) for 26 Filter Paper Unit (FPU) / 1% solid loading (CS).
期刊介绍:
The Journal of Supercritical Fluids is an international journal devoted to the fundamental and applied aspects of supercritical fluids and processes. Its aim is to provide a focused platform for academic and industrial researchers to report their findings and to have ready access to the advances in this rapidly growing field. Its coverage is multidisciplinary and includes both basic and applied topics.
Thermodynamics and phase equilibria, reaction kinetics and rate processes, thermal and transport properties, and all topics related to processing such as separations (extraction, fractionation, purification, chromatography) nucleation and impregnation are within the scope. Accounts of specific engineering applications such as those encountered in food, fuel, natural products, minerals, pharmaceuticals and polymer industries are included. Topics related to high pressure equipment design, analytical techniques, sensors, and process control methodologies are also within the scope of the journal.