多尺度模拟在先进电子封装中的应用

IF 6.2 3区 综合性期刊 Q1 Multidisciplinary Fundamental Research Pub Date : 2024-11-01 DOI:10.1016/j.fmre.2024.04.004
Wei Yu , Shucan Cheng , Zeyuan Li , Li Liu , Zhaofu Zhang , Yanpu Zhao , Yuzheng Guo , Sheng Liu
{"title":"多尺度模拟在先进电子封装中的应用","authors":"Wei Yu ,&nbsp;Shucan Cheng ,&nbsp;Zeyuan Li ,&nbsp;Li Liu ,&nbsp;Zhaofu Zhang ,&nbsp;Yanpu Zhao ,&nbsp;Yuzheng Guo ,&nbsp;Sheng Liu","doi":"10.1016/j.fmre.2024.04.004","DOIUrl":null,"url":null,"abstract":"<div><div>Electronic packaging is an essential branch of electronic engineering that aims to protect electronic, microelectronic, and nanoelectronic systems from environmental conditions. The design of electronic packaging is highly complex and requires the consideration of multi-physics phenomena, such as thermal transport, electromagnetic fields, and mechanical stress. This review presents a comprehensive overview of the multiphysics coupling of electric, magnetic, thermal, mechanical, and fluid fields, which are crucial for assessing the performance and reliability of electronic devices. The recent advancements in multi-scale simulation techniques are also systematically summarized, such as finite element methods at the macroscopic scale, molecular dynamics and density functional theory at the microscopic scale, and particularly machine learning methods for bridging different scales. Additionally, we illustrate how these methods can be applied to study various aspects of electronic packaging, such as material properties, interfacial failure, thermal management, electromigration, and stress analysis. The challenges and the potential applications of multi-scale simulation techniques in electronic packaging are also highlighted. Further, some future directions for multi-scale simulation techniques in electronic packaging are concluded for further investigation.</div></div>","PeriodicalId":34602,"journal":{"name":"Fundamental Research","volume":"4 6","pages":"Pages 1442-1454"},"PeriodicalIF":6.2000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The application of multi-scale simulation in advanced electronic packaging\",\"authors\":\"Wei Yu ,&nbsp;Shucan Cheng ,&nbsp;Zeyuan Li ,&nbsp;Li Liu ,&nbsp;Zhaofu Zhang ,&nbsp;Yanpu Zhao ,&nbsp;Yuzheng Guo ,&nbsp;Sheng Liu\",\"doi\":\"10.1016/j.fmre.2024.04.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Electronic packaging is an essential branch of electronic engineering that aims to protect electronic, microelectronic, and nanoelectronic systems from environmental conditions. The design of electronic packaging is highly complex and requires the consideration of multi-physics phenomena, such as thermal transport, electromagnetic fields, and mechanical stress. This review presents a comprehensive overview of the multiphysics coupling of electric, magnetic, thermal, mechanical, and fluid fields, which are crucial for assessing the performance and reliability of electronic devices. The recent advancements in multi-scale simulation techniques are also systematically summarized, such as finite element methods at the macroscopic scale, molecular dynamics and density functional theory at the microscopic scale, and particularly machine learning methods for bridging different scales. Additionally, we illustrate how these methods can be applied to study various aspects of electronic packaging, such as material properties, interfacial failure, thermal management, electromigration, and stress analysis. The challenges and the potential applications of multi-scale simulation techniques in electronic packaging are also highlighted. Further, some future directions for multi-scale simulation techniques in electronic packaging are concluded for further investigation.</div></div>\",\"PeriodicalId\":34602,\"journal\":{\"name\":\"Fundamental Research\",\"volume\":\"4 6\",\"pages\":\"Pages 1442-1454\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fundamental Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667325824001420\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Multidisciplinary\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fundamental Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667325824001420","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0

摘要

电子封装是电子工程的一个重要分支,旨在保护电子、微电子和纳米电子系统免受环境条件的影响。电子封装的设计是高度复杂的,需要考虑多物理场现象,如热输运、电磁场和机械应力。本文综述了电、磁、热、机械和流体场的多物理场耦合,这对评估电子设备的性能和可靠性至关重要。系统总结了多尺度模拟技术的最新进展,如宏观尺度上的有限元方法,微观尺度上的分子动力学和密度泛函理论,特别是跨尺度的机器学习方法。此外,我们还说明了如何将这些方法应用于研究电子封装的各个方面,如材料特性、界面失效、热管理、电迁移和应力分析。强调了多尺度模拟技术在电子封装中的挑战和潜在应用。最后,对电子封装多尺度模拟技术的发展方向进行了展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The application of multi-scale simulation in advanced electronic packaging
Electronic packaging is an essential branch of electronic engineering that aims to protect electronic, microelectronic, and nanoelectronic systems from environmental conditions. The design of electronic packaging is highly complex and requires the consideration of multi-physics phenomena, such as thermal transport, electromagnetic fields, and mechanical stress. This review presents a comprehensive overview of the multiphysics coupling of electric, magnetic, thermal, mechanical, and fluid fields, which are crucial for assessing the performance and reliability of electronic devices. The recent advancements in multi-scale simulation techniques are also systematically summarized, such as finite element methods at the macroscopic scale, molecular dynamics and density functional theory at the microscopic scale, and particularly machine learning methods for bridging different scales. Additionally, we illustrate how these methods can be applied to study various aspects of electronic packaging, such as material properties, interfacial failure, thermal management, electromigration, and stress analysis. The challenges and the potential applications of multi-scale simulation techniques in electronic packaging are also highlighted. Further, some future directions for multi-scale simulation techniques in electronic packaging are concluded for further investigation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fundamental Research
Fundamental Research Multidisciplinary-Multidisciplinary
CiteScore
4.00
自引率
1.60%
发文量
294
审稿时长
79 days
期刊介绍:
期刊最新文献
Solute-solvent dual engineering toward versatile electrolyte for high-voltage aqueous zinc-based energy storage devices Prediction of novel tetravalent metal pentazolate salts with anharmonic effect Gene therapy as an emerging treatment for Scn2a mutation-induced autism spectrum disorders Peltier cell calorimetry “as an option” for commonplace cryostats: Application to the case of MnFe(P,Si,B) magnetocaloric materials Digitalized analog integrated circuits
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1