Ji Liu, Chunlu Chen, Yu Li, Lin Sun, Yulun Song, Jingbo Zhou, Bo Jing, Dejing Dou
{"title":"增强分布式网络中的信任和隐私:基于区块链的联合学习综合调查","authors":"Ji Liu, Chunlu Chen, Yu Li, Lin Sun, Yulun Song, Jingbo Zhou, Bo Jing, Dejing Dou","doi":"10.1007/s10115-024-02117-3","DOIUrl":null,"url":null,"abstract":"<p>While centralized servers pose a risk of being a single point of failure, decentralized approaches like blockchain offer a compelling solution by implementing a consensus mechanism among multiple entities. Merging distributed computing with cryptographic techniques, decentralized technologies introduce a novel computing paradigm. Blockchain ensures secure, transparent, and tamper-proof data management by validating and recording transactions via consensus across network nodes. Federated Learning (FL), as a distributed machine learning framework, enables participants to collaboratively train models while safeguarding data privacy by avoiding direct raw data exchange. Despite the growing interest in decentralized methods, their application in FL remains underexplored. This paper presents a thorough investigation into blockchain-based FL (BCFL), spotlighting the synergy between blockchain’s security features and FL’s privacy-preserving model training capabilities. First, we present the taxonomy of BCFL from three aspects, including decentralized, separate networks, and reputation-based architectures. Then, we summarize the general architecture of BCFL systems, providing a comprehensive perspective on FL architectures informed by blockchain. Afterward, we analyze the application of BCFL in healthcare, IoT, and other privacy-sensitive areas. Finally, we identify future research directions of BCFL.\n</p>","PeriodicalId":54749,"journal":{"name":"Knowledge and Information Systems","volume":"26 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing trust and privacy in distributed networks: a comprehensive survey on blockchain-based federated learning\",\"authors\":\"Ji Liu, Chunlu Chen, Yu Li, Lin Sun, Yulun Song, Jingbo Zhou, Bo Jing, Dejing Dou\",\"doi\":\"10.1007/s10115-024-02117-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>While centralized servers pose a risk of being a single point of failure, decentralized approaches like blockchain offer a compelling solution by implementing a consensus mechanism among multiple entities. Merging distributed computing with cryptographic techniques, decentralized technologies introduce a novel computing paradigm. Blockchain ensures secure, transparent, and tamper-proof data management by validating and recording transactions via consensus across network nodes. Federated Learning (FL), as a distributed machine learning framework, enables participants to collaboratively train models while safeguarding data privacy by avoiding direct raw data exchange. Despite the growing interest in decentralized methods, their application in FL remains underexplored. This paper presents a thorough investigation into blockchain-based FL (BCFL), spotlighting the synergy between blockchain’s security features and FL’s privacy-preserving model training capabilities. First, we present the taxonomy of BCFL from three aspects, including decentralized, separate networks, and reputation-based architectures. Then, we summarize the general architecture of BCFL systems, providing a comprehensive perspective on FL architectures informed by blockchain. Afterward, we analyze the application of BCFL in healthcare, IoT, and other privacy-sensitive areas. Finally, we identify future research directions of BCFL.\\n</p>\",\"PeriodicalId\":54749,\"journal\":{\"name\":\"Knowledge and Information Systems\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Knowledge and Information Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10115-024-02117-3\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge and Information Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10115-024-02117-3","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Enhancing trust and privacy in distributed networks: a comprehensive survey on blockchain-based federated learning
While centralized servers pose a risk of being a single point of failure, decentralized approaches like blockchain offer a compelling solution by implementing a consensus mechanism among multiple entities. Merging distributed computing with cryptographic techniques, decentralized technologies introduce a novel computing paradigm. Blockchain ensures secure, transparent, and tamper-proof data management by validating and recording transactions via consensus across network nodes. Federated Learning (FL), as a distributed machine learning framework, enables participants to collaboratively train models while safeguarding data privacy by avoiding direct raw data exchange. Despite the growing interest in decentralized methods, their application in FL remains underexplored. This paper presents a thorough investigation into blockchain-based FL (BCFL), spotlighting the synergy between blockchain’s security features and FL’s privacy-preserving model training capabilities. First, we present the taxonomy of BCFL from three aspects, including decentralized, separate networks, and reputation-based architectures. Then, we summarize the general architecture of BCFL systems, providing a comprehensive perspective on FL architectures informed by blockchain. Afterward, we analyze the application of BCFL in healthcare, IoT, and other privacy-sensitive areas. Finally, we identify future research directions of BCFL.
期刊介绍:
Knowledge and Information Systems (KAIS) provides an international forum for researchers and professionals to share their knowledge and report new advances on all topics related to knowledge systems and advanced information systems. This monthly peer-reviewed archival journal publishes state-of-the-art research reports on emerging topics in KAIS, reviews of important techniques in related areas, and application papers of interest to a general readership.