{"title":"通过抽象解释验证 k 近邻的鲁棒性","authors":"Nicolò Fassina, Francesco Ranzato, Marco Zanella","doi":"10.1007/s10115-024-02108-4","DOIUrl":null,"url":null,"abstract":"<p>We study the certification of stability properties, such as robustness and individual fairness, of the <i>k</i>-nearest neighbor algorithm (<i>k</i>NN). Our approach leverages abstract interpretation, a well-established program analysis technique that has been proven successful in verifying several machine learning algorithms, notably, neural networks, decision trees, and support vector machines. In this work, we put forward an abstract interpretation-based framework for designing a sound approximate version of the <i>k</i>NN algorithm, which is instantiated to the interval and zonotope abstractions for approximating the range of numerical features. We show how this abstraction-based method can be used for stability, robustness, and individual fairness certification of <i>k</i>NN. Our certification technique has been implemented and experimentally evaluated on several benchmark datasets. These experimental results show that our tool can formally prove the stability of <i>k</i>NN classifiers in a precise and efficient way, thus expanding the range of machine learning models amenable to robustness certification.\n</p>","PeriodicalId":54749,"journal":{"name":"Knowledge and Information Systems","volume":"2015 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robustness verification of k-nearest neighbors by abstract interpretation\",\"authors\":\"Nicolò Fassina, Francesco Ranzato, Marco Zanella\",\"doi\":\"10.1007/s10115-024-02108-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the certification of stability properties, such as robustness and individual fairness, of the <i>k</i>-nearest neighbor algorithm (<i>k</i>NN). Our approach leverages abstract interpretation, a well-established program analysis technique that has been proven successful in verifying several machine learning algorithms, notably, neural networks, decision trees, and support vector machines. In this work, we put forward an abstract interpretation-based framework for designing a sound approximate version of the <i>k</i>NN algorithm, which is instantiated to the interval and zonotope abstractions for approximating the range of numerical features. We show how this abstraction-based method can be used for stability, robustness, and individual fairness certification of <i>k</i>NN. Our certification technique has been implemented and experimentally evaluated on several benchmark datasets. These experimental results show that our tool can formally prove the stability of <i>k</i>NN classifiers in a precise and efficient way, thus expanding the range of machine learning models amenable to robustness certification.\\n</p>\",\"PeriodicalId\":54749,\"journal\":{\"name\":\"Knowledge and Information Systems\",\"volume\":\"2015 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Knowledge and Information Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10115-024-02108-4\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge and Information Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10115-024-02108-4","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
摘要
我们研究了 k 近邻算法(kNN)稳定性属性的认证,如稳健性和个体公平性。抽象解释是一种成熟的程序分析技术,在验证神经网络、决策树和支持向量机等多种机器学习算法方面已被证明是成功的。在这项工作中,我们提出了一个基于抽象解释的框架,用于设计 kNN 算法的合理近似版本,并将其实例化为用于近似数值特征范围的区间和带状抽象。我们展示了这种基于抽象的方法如何用于 kNN 的稳定性、鲁棒性和个体公平性认证。我们的认证技术已在多个基准数据集上实现并进行了实验评估。这些实验结果表明,我们的工具能以精确、高效的方式正式证明 kNN 分类器的稳定性,从而扩大了可进行鲁棒性认证的机器学习模型的范围。
Robustness verification of k-nearest neighbors by abstract interpretation
We study the certification of stability properties, such as robustness and individual fairness, of the k-nearest neighbor algorithm (kNN). Our approach leverages abstract interpretation, a well-established program analysis technique that has been proven successful in verifying several machine learning algorithms, notably, neural networks, decision trees, and support vector machines. In this work, we put forward an abstract interpretation-based framework for designing a sound approximate version of the kNN algorithm, which is instantiated to the interval and zonotope abstractions for approximating the range of numerical features. We show how this abstraction-based method can be used for stability, robustness, and individual fairness certification of kNN. Our certification technique has been implemented and experimentally evaluated on several benchmark datasets. These experimental results show that our tool can formally prove the stability of kNN classifiers in a precise and efficient way, thus expanding the range of machine learning models amenable to robustness certification.
期刊介绍:
Knowledge and Information Systems (KAIS) provides an international forum for researchers and professionals to share their knowledge and report new advances on all topics related to knowledge systems and advanced information systems. This monthly peer-reviewed archival journal publishes state-of-the-art research reports on emerging topics in KAIS, reviews of important techniques in related areas, and application papers of interest to a general readership.