通过板外电动汽车双向充电器对虚拟惯性、频率和电压支持进行 HESS 管理

IF 5.2 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Open Journal of the Industrial Electronics Society Pub Date : 2024-04-26 DOI:10.1109/OJIES.2024.3394290
Jhonatan D. Paucara;José Carlos U. Peña;Damian Sal y Rosas
{"title":"通过板外电动汽车双向充电器对虚拟惯性、频率和电压支持进行 HESS 管理","authors":"Jhonatan D. Paucara;José Carlos U. Peña;Damian Sal y Rosas","doi":"10.1109/OJIES.2024.3394290","DOIUrl":null,"url":null,"abstract":"The massive integration of renewable energies into the grid using fast-response converters without inertia generates issues such as inertia reduction, temporary voltage violations, and power quality reduction. The system inertia reduction is a critical problem that could lead to grid frequency exceeding the acceptable range, resulting in undesirable load-shedding or even large-scale blackouts. To overcome these issues, the use of electric vehicle bidirectional chargers (EVBCs) implementing functionalities such as distributed virtual inertia (VI), long-term frequency support, voltage support by reactive power, and harmonics compensation, has been proposed as a possible solution. This article proposes a novel control strategy to manage a hybrid energy storage system (HESS) composed of dc-link capacitors and battery, through an isolated two-stage ac–dc converter (composed of a dual active bridge resonant type dc–dc converter cascaded to a voltage source inverter), intended for off-board EVBCs. The HESS management allows decoupling of the active power dynamic response since dc-link capacitors supply the fast dynamic response for VI support whereas the battery supplies the slower dynamic response for long-term frequency support, respectively. Hence, the VI support does not affect the battery lifetime. Simulations and experimental results are presented for a 2.5 kW prototype to validate VI, frequency-voltage support along with harmonics compensation.","PeriodicalId":52675,"journal":{"name":"IEEE Open Journal of the Industrial Electronics Society","volume":"5 ","pages":"376-385"},"PeriodicalIF":5.2000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10508895","citationCount":"0","resultStr":"{\"title\":\"HESS Management for Virtual Inertia, Frequency, and Voltage Support Through Off-Board EV Bidirectional Chargers\",\"authors\":\"Jhonatan D. Paucara;José Carlos U. Peña;Damian Sal y Rosas\",\"doi\":\"10.1109/OJIES.2024.3394290\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The massive integration of renewable energies into the grid using fast-response converters without inertia generates issues such as inertia reduction, temporary voltage violations, and power quality reduction. The system inertia reduction is a critical problem that could lead to grid frequency exceeding the acceptable range, resulting in undesirable load-shedding or even large-scale blackouts. To overcome these issues, the use of electric vehicle bidirectional chargers (EVBCs) implementing functionalities such as distributed virtual inertia (VI), long-term frequency support, voltage support by reactive power, and harmonics compensation, has been proposed as a possible solution. This article proposes a novel control strategy to manage a hybrid energy storage system (HESS) composed of dc-link capacitors and battery, through an isolated two-stage ac–dc converter (composed of a dual active bridge resonant type dc–dc converter cascaded to a voltage source inverter), intended for off-board EVBCs. The HESS management allows decoupling of the active power dynamic response since dc-link capacitors supply the fast dynamic response for VI support whereas the battery supplies the slower dynamic response for long-term frequency support, respectively. Hence, the VI support does not affect the battery lifetime. Simulations and experimental results are presented for a 2.5 kW prototype to validate VI, frequency-voltage support along with harmonics compensation.\",\"PeriodicalId\":52675,\"journal\":{\"name\":\"IEEE Open Journal of the Industrial Electronics Society\",\"volume\":\"5 \",\"pages\":\"376-385\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10508895\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of the Industrial Electronics Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10508895/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Industrial Electronics Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10508895/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

使用无惯性快速响应转换器将可再生能源大规模并入电网,会产生惯性降低、临时电压异常和电能质量下降等问题。系统惯性降低是一个关键问题,它可能导致电网频率超出可接受范围,造成不理想的甩负荷甚至大规模停电。为解决这些问题,有人提出了使用电动汽车双向充电器(EVBC)的可行解决方案,该充电器具有分布式虚拟惯性(VI)、长期频率支持、无功功率电压支持和谐波补偿等功能。本文提出了一种新颖的控制策略,通过隔离式两级交流-直流转换器(由级联至电压源逆变器的双有源桥谐振型直流-直流转换器组成)管理由直流链路电容器和电池组成的混合储能系统(HESS),该系统旨在用于板外 EVBC。由于直流链路电容器为 VI 支持提供快速动态响应,而电池则为长期频率支持提供较慢的动态响应,因此 HESS 管理可实现有功功率动态响应的解耦。因此,VI 支持不会影响电池的使用寿命。本文介绍了 2.5 kW 原型的模拟和实验结果,以验证 VI、频率-电压支持以及谐波补偿。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
HESS Management for Virtual Inertia, Frequency, and Voltage Support Through Off-Board EV Bidirectional Chargers
The massive integration of renewable energies into the grid using fast-response converters without inertia generates issues such as inertia reduction, temporary voltage violations, and power quality reduction. The system inertia reduction is a critical problem that could lead to grid frequency exceeding the acceptable range, resulting in undesirable load-shedding or even large-scale blackouts. To overcome these issues, the use of electric vehicle bidirectional chargers (EVBCs) implementing functionalities such as distributed virtual inertia (VI), long-term frequency support, voltage support by reactive power, and harmonics compensation, has been proposed as a possible solution. This article proposes a novel control strategy to manage a hybrid energy storage system (HESS) composed of dc-link capacitors and battery, through an isolated two-stage ac–dc converter (composed of a dual active bridge resonant type dc–dc converter cascaded to a voltage source inverter), intended for off-board EVBCs. The HESS management allows decoupling of the active power dynamic response since dc-link capacitors supply the fast dynamic response for VI support whereas the battery supplies the slower dynamic response for long-term frequency support, respectively. Hence, the VI support does not affect the battery lifetime. Simulations and experimental results are presented for a 2.5 kW prototype to validate VI, frequency-voltage support along with harmonics compensation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Open Journal of the Industrial Electronics Society
IEEE Open Journal of the Industrial Electronics Society ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
10.80
自引率
2.40%
发文量
33
审稿时长
12 weeks
期刊介绍: The IEEE Open Journal of the Industrial Electronics Society is dedicated to advancing information-intensive, knowledge-based automation, and digitalization, aiming to enhance various industrial and infrastructural ecosystems including energy, mobility, health, and home/building infrastructure. Encompassing a range of techniques leveraging data and information acquisition, analysis, manipulation, and distribution, the journal strives to achieve greater flexibility, efficiency, effectiveness, reliability, and security within digitalized and networked environments. Our scope provides a platform for discourse and dissemination of the latest developments in numerous research and innovation areas. These include electrical components and systems, smart grids, industrial cyber-physical systems, motion control, robotics and mechatronics, sensors and actuators, factory and building communication and automation, industrial digitalization, flexible and reconfigurable manufacturing, assistant systems, industrial applications of artificial intelligence and data science, as well as the implementation of machine learning, artificial neural networks, and fuzzy logic. Additionally, we explore human factors in digitalized and networked ecosystems. Join us in exploring and shaping the future of industrial electronics and digitalization.
期刊最新文献
Short-Term Control of Heat Pumps to Support Power Grid Operation Effects of Grid Voltage and Load Unbalances on the Efficiency of a Hybrid Distribution Transformer Enhanced PI Control Based SHC-PWM Strategy for Active Power Filters A Detailed Study on Algorithms for Predictive Maintenance in Smart Manufacturing: Chip Form Classification Using Edge Machine Learning Design and Evaluation of a Voice-Controlled Elevator System to Improve the Safety and Accessibility
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1