基于 AP 聚类和 LSTNet 的甘肃省河西地区光伏功率预测

IF 1.9 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC International Transactions on Electrical Energy Systems Pub Date : 2024-04-26 DOI:10.1155/2024/6667756
Xujiong Li, Guoming Yang, Jun Gou
{"title":"基于 AP 聚类和 LSTNet 的甘肃省河西地区光伏功率预测","authors":"Xujiong Li,&nbsp;Guoming Yang,&nbsp;Jun Gou","doi":"10.1155/2024/6667756","DOIUrl":null,"url":null,"abstract":"<p>Accurate PV power forecasting is becoming a mandatory task to integrate the PV system into the power grid, schedule it, and ensure the safety of the power grid. In this paper, a novel model for PV power prediction using AP-LSTNet has been proposed. It consists of a combination of affinity propagation clustering and long-term and short-term time series network models. First, the affinity propagation algorithm is used to divide the regionally distributed photovoltaic station clusters into different seasons. The Pearson correlation coefficient is used to determine the strong correlation between meteorological factors of photovoltaic power, and the bilinear interpolation method is used to encrypt the meteorological data of the corresponding photovoltaic station cluster. Furthermore, LSTNet is used to mine the long-term and short-term temporal and spatial dependence of photovoltaic power, and meteorological factor series and linear components of auto-regression are superimposed to realize the simultaneous prediction of multiple photovoltaic stations in the group. Finally, PV power plants in five cities, Wuwei, Jinchang, Zhangye, Jiuquan, and Jiayuguan in the Hexi region of Gansu Province, China, will be selected to test the proposed model. The experimental comparison shows that the prediction model achieves high prediction accuracy and robustness.</p>","PeriodicalId":51293,"journal":{"name":"International Transactions on Electrical Energy Systems","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PV Power Forecasting in the Hexi Region of Gansu Province Based on AP Clustering and LSTNet\",\"authors\":\"Xujiong Li,&nbsp;Guoming Yang,&nbsp;Jun Gou\",\"doi\":\"10.1155/2024/6667756\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Accurate PV power forecasting is becoming a mandatory task to integrate the PV system into the power grid, schedule it, and ensure the safety of the power grid. In this paper, a novel model for PV power prediction using AP-LSTNet has been proposed. It consists of a combination of affinity propagation clustering and long-term and short-term time series network models. First, the affinity propagation algorithm is used to divide the regionally distributed photovoltaic station clusters into different seasons. The Pearson correlation coefficient is used to determine the strong correlation between meteorological factors of photovoltaic power, and the bilinear interpolation method is used to encrypt the meteorological data of the corresponding photovoltaic station cluster. Furthermore, LSTNet is used to mine the long-term and short-term temporal and spatial dependence of photovoltaic power, and meteorological factor series and linear components of auto-regression are superimposed to realize the simultaneous prediction of multiple photovoltaic stations in the group. Finally, PV power plants in five cities, Wuwei, Jinchang, Zhangye, Jiuquan, and Jiayuguan in the Hexi region of Gansu Province, China, will be selected to test the proposed model. The experimental comparison shows that the prediction model achieves high prediction accuracy and robustness.</p>\",\"PeriodicalId\":51293,\"journal\":{\"name\":\"International Transactions on Electrical Energy Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Transactions on Electrical Energy Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/2024/6667756\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Transactions on Electrical Energy Systems","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/6667756","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

要将光伏系统并入电网、进行调度并确保电网安全,准确的光伏功率预测已成为一项必须完成的任务。本文提出了一种利用 AP-LSTNet 进行光伏功率预测的新型模型。它由亲和传播聚类与长期和短期时间序列网络模型组合而成。首先,利用亲和传播算法将区域分布的光伏电站集群划分为不同的季节。利用皮尔逊相关系数确定光伏发电气象因子之间的强相关性,并采用双线性插值法对相应光伏电站集群的气象数据进行加密。此外,利用 LSTNet 挖掘光伏发电量的长期和短期时空依赖关系,并将气象因子序列与自动回归的线性分量叠加,实现对群内多个光伏电站的同步预测。最后,将选取甘肃省河西地区的武威、金昌、张掖、酒泉和嘉峪关五个城市的光伏电站对提出的模型进行检验。实验对比表明,该预测模型具有较高的预测精度和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PV Power Forecasting in the Hexi Region of Gansu Province Based on AP Clustering and LSTNet

Accurate PV power forecasting is becoming a mandatory task to integrate the PV system into the power grid, schedule it, and ensure the safety of the power grid. In this paper, a novel model for PV power prediction using AP-LSTNet has been proposed. It consists of a combination of affinity propagation clustering and long-term and short-term time series network models. First, the affinity propagation algorithm is used to divide the regionally distributed photovoltaic station clusters into different seasons. The Pearson correlation coefficient is used to determine the strong correlation between meteorological factors of photovoltaic power, and the bilinear interpolation method is used to encrypt the meteorological data of the corresponding photovoltaic station cluster. Furthermore, LSTNet is used to mine the long-term and short-term temporal and spatial dependence of photovoltaic power, and meteorological factor series and linear components of auto-regression are superimposed to realize the simultaneous prediction of multiple photovoltaic stations in the group. Finally, PV power plants in five cities, Wuwei, Jinchang, Zhangye, Jiuquan, and Jiayuguan in the Hexi region of Gansu Province, China, will be selected to test the proposed model. The experimental comparison shows that the prediction model achieves high prediction accuracy and robustness.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Transactions on Electrical Energy Systems
International Transactions on Electrical Energy Systems ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
6.70
自引率
8.70%
发文量
342
期刊介绍: International Transactions on Electrical Energy Systems publishes original research results on key advances in the generation, transmission, and distribution of electrical energy systems. Of particular interest are submissions concerning the modeling, analysis, optimization and control of advanced electric power systems. Manuscripts on topics of economics, finance, policies, insulation materials, low-voltage power electronics, plasmas, and magnetics will generally not be considered for review.
期刊最新文献
Nonlinear Failure Analysis of Critical Area of Transmission Towers Based on the Continuum Damage Theory Comparative Analysis and Performance Evaluation of Underwater Cable Detection and Tracking Techniques: A Comprehensive Survey Hybrid ANFIS-PI-Based Robust Control of Wind Turbine Power Generation System Optimal Allocation and Sizing of Capacitor Banks in Distribution System to Reduce the Power Loss Using Beluga Whale Optimization An Improved Machine Learning-Based Model for Detecting and Classifying PQDs with High Noise Immunity in Renewable-Integrated Microgrids
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1