确定康威-麦克斯韦-泊松模型中 ML 估计值的存在性和位置

IF 0.8 Q3 STATISTICS & PROBABILITY Mathematical Methods of Statistics Pub Date : 2024-04-25 DOI:10.3103/s1066530724700042
Stefan Bedbur, Anton Imm, Udo Kamps
{"title":"确定康威-麦克斯韦-泊松模型中 ML 估计值的存在性和位置","authors":"Stefan Bedbur, Anton Imm, Udo Kamps","doi":"10.3103/s1066530724700042","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>As a flexible extension of the common Poisson model, the Conway–Maxwell–Poisson distribution allows for describing under- and overdispersion in count data via an additional parameter. Estimation methods for two Conway–Maxwell–Poisson parameters are then required to specify the model. In this work, two characterization results are provided related to maximum likelihood estimation of the Conway–Maxwell–Poisson parameters. The first states that maximum likelihood estimation fails if and only if the range of the observations is less than two. Assuming that the maximum likelihood estimate exists, the second result then comprises a simple necessary and sufficient condition for the maximum likelihood estimate to be a solution of the likelihood equation; otherwise it lies on the boundary of the parameter set. A simulation study is carried out to investigate the accuracy of the maximum likelihood estimate in dependence of the range of the underlying observations.</p>","PeriodicalId":46039,"journal":{"name":"Mathematical Methods of Statistics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterizing Existence and Location of the ML Estimate in the Conway–Maxwell–Poisson Model\",\"authors\":\"Stefan Bedbur, Anton Imm, Udo Kamps\",\"doi\":\"10.3103/s1066530724700042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>As a flexible extension of the common Poisson model, the Conway–Maxwell–Poisson distribution allows for describing under- and overdispersion in count data via an additional parameter. Estimation methods for two Conway–Maxwell–Poisson parameters are then required to specify the model. In this work, two characterization results are provided related to maximum likelihood estimation of the Conway–Maxwell–Poisson parameters. The first states that maximum likelihood estimation fails if and only if the range of the observations is less than two. Assuming that the maximum likelihood estimate exists, the second result then comprises a simple necessary and sufficient condition for the maximum likelihood estimate to be a solution of the likelihood equation; otherwise it lies on the boundary of the parameter set. A simulation study is carried out to investigate the accuracy of the maximum likelihood estimate in dependence of the range of the underlying observations.</p>\",\"PeriodicalId\":46039,\"journal\":{\"name\":\"Mathematical Methods of Statistics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Methods of Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3103/s1066530724700042\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Methods of Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3103/s1066530724700042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

摘要 作为普通泊松模型的灵活扩展,康威-麦克斯韦-泊松分布允许通过一个附加参数来描述计数数据的欠分散和过分散。因此,需要两个 Conway-Maxwell 泊松参数的估计方法来指定模型。在这项工作中,提供了两个与康威-麦克斯韦-泊松参数最大似然估计有关的特征结果。第一个结果表明,当且仅当观测值的范围小于两个时,最大似然估计才会失败。假设存在最大似然估计,那么第二个结果就包含了一个简单的必要条件和充分条件,即最大似然估计是似然方程的一个解;否则,它就位于参数集的边界上。我们进行了一项模拟研究,以探讨最大似然估计的准确性与基本观测值范围的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Characterizing Existence and Location of the ML Estimate in the Conway–Maxwell–Poisson Model

Abstract

As a flexible extension of the common Poisson model, the Conway–Maxwell–Poisson distribution allows for describing under- and overdispersion in count data via an additional parameter. Estimation methods for two Conway–Maxwell–Poisson parameters are then required to specify the model. In this work, two characterization results are provided related to maximum likelihood estimation of the Conway–Maxwell–Poisson parameters. The first states that maximum likelihood estimation fails if and only if the range of the observations is less than two. Assuming that the maximum likelihood estimate exists, the second result then comprises a simple necessary and sufficient condition for the maximum likelihood estimate to be a solution of the likelihood equation; otherwise it lies on the boundary of the parameter set. A simulation study is carried out to investigate the accuracy of the maximum likelihood estimate in dependence of the range of the underlying observations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematical Methods of Statistics
Mathematical Methods of Statistics STATISTICS & PROBABILITY-
CiteScore
0.60
自引率
0.00%
发文量
2
期刊介绍: Mathematical Methods of Statistics  is an is an international peer reviewed journal dedicated to the mathematical foundations of statistical theory. It primarily publishes research papers with complete proofs and, occasionally, review papers on particular problems of statistics. Papers dealing with applications of statistics are also published if they contain new theoretical developments to the underlying statistical methods. The journal provides an outlet for research in advanced statistical methodology and for studies where such methodology is effectively used or which stimulate its further development.
期刊最新文献
Asymptotic Properties of Extrema of Moving Sums of Independent Non-identically Distributed Variables Stochastic Comparisons of the Smallest Claim Amounts from Two Heterogeneous Portfolios Following Exponentiated Weibull Distribution Estimation of Parameters of Misclassified Size Biased Uniform Poisson Distribution and Its Application Rates of the Strong Uniform Consistency with Rates for Conditional U-Statistics Estimators with General Kernels on Manifolds On Aggregation of Uncensored and Censored Observations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1