精确矩阵的截断估计器

IF 0.8 Q3 STATISTICS & PROBABILITY Mathematical Methods of Statistics Pub Date : 2024-04-25 DOI:10.3103/s1066530724700029
Anis M. Haddouche, Dominique Fourdrinier
{"title":"精确矩阵的截断估计器","authors":"Anis M. Haddouche, Dominique Fourdrinier","doi":"10.3103/s1066530724700029","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>In this paper, we estimate the precision matrix <span>\\({\\Sigma}^{-1}\\)</span> of a Gaussian multivariate linear regression model through its canonical form <span>\\(({Z}^{T},{U}^{T})^{T}\\)</span> where <span>\\(Z\\)</span> and <span>\\(U\\)</span> are respectively an <span>\\(m\\times p\\)</span> and an <span>\\(n\\times p\\)</span> matrices. This problem is addressed under the data-based loss function <span>\\(\\textrm{tr}\\ [({\\hat{\\Sigma}}^{-1}-{\\Sigma}^{-1})S]^{2}\\)</span>, where <span>\\({\\hat{\\Sigma}}^{-1}\\)</span> estimates <span>\\({\\Sigma}^{-1}\\)</span>, for any ordering of <span>\\(m,n\\)</span> and <span>\\(p\\)</span>, in a unified approach. We derive estimators which, besides the information contained in the sample covariance matrix <span>\\(S={U}^{T}U\\)</span>, use the information contained in the sample mean <span>\\(Z\\)</span>. We provide conditions for which these estimators improve over the usual estimators <span>\\(a{S}^{+}\\)</span> where <span>\\(a\\)</span> is a positive constant and <span>\\({S}^{+}\\)</span> is the Moore-Penrose inverse of <span>\\(S\\)</span>. Thanks to the role of <span>\\(Z\\)</span>, such estimators are also improved by their truncated version.</p>","PeriodicalId":46039,"journal":{"name":"Mathematical Methods of Statistics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Truncated Estimators for a Precision Matrix\",\"authors\":\"Anis M. Haddouche, Dominique Fourdrinier\",\"doi\":\"10.3103/s1066530724700029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>In this paper, we estimate the precision matrix <span>\\\\({\\\\Sigma}^{-1}\\\\)</span> of a Gaussian multivariate linear regression model through its canonical form <span>\\\\(({Z}^{T},{U}^{T})^{T}\\\\)</span> where <span>\\\\(Z\\\\)</span> and <span>\\\\(U\\\\)</span> are respectively an <span>\\\\(m\\\\times p\\\\)</span> and an <span>\\\\(n\\\\times p\\\\)</span> matrices. This problem is addressed under the data-based loss function <span>\\\\(\\\\textrm{tr}\\\\ [({\\\\hat{\\\\Sigma}}^{-1}-{\\\\Sigma}^{-1})S]^{2}\\\\)</span>, where <span>\\\\({\\\\hat{\\\\Sigma}}^{-1}\\\\)</span> estimates <span>\\\\({\\\\Sigma}^{-1}\\\\)</span>, for any ordering of <span>\\\\(m,n\\\\)</span> and <span>\\\\(p\\\\)</span>, in a unified approach. We derive estimators which, besides the information contained in the sample covariance matrix <span>\\\\(S={U}^{T}U\\\\)</span>, use the information contained in the sample mean <span>\\\\(Z\\\\)</span>. We provide conditions for which these estimators improve over the usual estimators <span>\\\\(a{S}^{+}\\\\)</span> where <span>\\\\(a\\\\)</span> is a positive constant and <span>\\\\({S}^{+}\\\\)</span> is the Moore-Penrose inverse of <span>\\\\(S\\\\)</span>. Thanks to the role of <span>\\\\(Z\\\\)</span>, such estimators are also improved by their truncated version.</p>\",\"PeriodicalId\":46039,\"journal\":{\"name\":\"Mathematical Methods of Statistics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Methods of Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3103/s1066530724700029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Methods of Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3103/s1066530724700029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

Abstract 在本文中,我们通过高斯多元线性回归模型的规范形式来估计其精度矩阵({\({Z}^{T},{U}^{T})^{T}),其中\(Z\)和\(U\)分别是一个\(m/times p\) 矩阵和一个\(n/times p\) 矩阵。在基于数据的损失函数\(textrm{tr}\ [({\hat{Sigma}}^{-1}-{\Sigma}^{-1})S]^{2}\) 下,这个问题得到了解决,其中\({\hat{Sigma}}^{-1}\)以统一的方法估计了\({\Sigma}^{-1}\),对于\(m,n\)和\(p\)的任意排序。除了样本协方差矩阵\(S={U}^{T}U\)中包含的信息外,我们还得出了使用样本平均值\(Z\)中包含的信息的估计值。我们提供了这些估计值优于通常估计值的条件,其中 \(a\)是一个正常数,\({S}^{+}\)是\(S\)的摩尔-彭罗斯倒数。由于\(Z\)的作用,这些估计值也会通过它们的截断版本得到改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Truncated Estimators for a Precision Matrix

Abstract

In this paper, we estimate the precision matrix \({\Sigma}^{-1}\) of a Gaussian multivariate linear regression model through its canonical form \(({Z}^{T},{U}^{T})^{T}\) where \(Z\) and \(U\) are respectively an \(m\times p\) and an \(n\times p\) matrices. This problem is addressed under the data-based loss function \(\textrm{tr}\ [({\hat{\Sigma}}^{-1}-{\Sigma}^{-1})S]^{2}\), where \({\hat{\Sigma}}^{-1}\) estimates \({\Sigma}^{-1}\), for any ordering of \(m,n\) and \(p\), in a unified approach. We derive estimators which, besides the information contained in the sample covariance matrix \(S={U}^{T}U\), use the information contained in the sample mean \(Z\). We provide conditions for which these estimators improve over the usual estimators \(a{S}^{+}\) where \(a\) is a positive constant and \({S}^{+}\) is the Moore-Penrose inverse of \(S\). Thanks to the role of \(Z\), such estimators are also improved by their truncated version.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematical Methods of Statistics
Mathematical Methods of Statistics STATISTICS & PROBABILITY-
CiteScore
0.60
自引率
0.00%
发文量
2
期刊介绍: Mathematical Methods of Statistics  is an is an international peer reviewed journal dedicated to the mathematical foundations of statistical theory. It primarily publishes research papers with complete proofs and, occasionally, review papers on particular problems of statistics. Papers dealing with applications of statistics are also published if they contain new theoretical developments to the underlying statistical methods. The journal provides an outlet for research in advanced statistical methodology and for studies where such methodology is effectively used or which stimulate its further development.
期刊最新文献
Asymptotic Properties of Extrema of Moving Sums of Independent Non-identically Distributed Variables Stochastic Comparisons of the Smallest Claim Amounts from Two Heterogeneous Portfolios Following Exponentiated Weibull Distribution Estimation of Parameters of Misclassified Size Biased Uniform Poisson Distribution and Its Application Rates of the Strong Uniform Consistency with Rates for Conditional U-Statistics Estimators with General Kernels on Manifolds On Aggregation of Uncensored and Censored Observations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1