{"title":"基于 MMS 卫星数据的地球磁尾等离子体薄片涡扩散系数的空间分布及其与行星际磁场和地磁活动的关系","authors":"D. Yu. Naiko, I. L. Ovchinnikov, E. E. Antonova","doi":"10.1134/S0016793223600996","DOIUrl":null,"url":null,"abstract":"<p>The article presents the results of a statistical analysis of the distribution of the eddy diffusion coefficient depending on the coordinates in the plasma sheet of Earth’s magnetosphere based on data from the Magnetospheric Multiscale Mission satellite system (MMS) for the period from 2017 to 2022. The localization of satellites inside the plasma sheet was recorded from the concentration and temperature of plasma ions according to the data of the same instruments and the value of plasma parameter β. Significant anisotropy of the eddy diffusion coefficient was revealed<i>.</i> The dependence of the eddy diffusion coefficient on the interplanetary magnetic field is analyzed, showing that with the southern orientation of the interplanetary magnetic field, the eddy diffusion coefficients are 1.5–2 times greater than with the northern orientation. It is also shown that under disturbed geomagnetic conditions (<i>SML</i> < –200 nT), the eddy diffusion coefficients are several times greater than under quiet geomagnetic conditions (<i>SML</i> > –50 nT).</p>","PeriodicalId":55597,"journal":{"name":"Geomagnetism and Aeronomy","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatial Distribution of the Eddy Diffusion Coefficient in the Plasma Sheet of Earth’s Magnetotail and Its Dependence on the Interplanetary Magnetic Field and Geomagnetic Activity Based on MMS Satellite Data\",\"authors\":\"D. Yu. Naiko, I. L. Ovchinnikov, E. E. Antonova\",\"doi\":\"10.1134/S0016793223600996\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The article presents the results of a statistical analysis of the distribution of the eddy diffusion coefficient depending on the coordinates in the plasma sheet of Earth’s magnetosphere based on data from the Magnetospheric Multiscale Mission satellite system (MMS) for the period from 2017 to 2022. The localization of satellites inside the plasma sheet was recorded from the concentration and temperature of plasma ions according to the data of the same instruments and the value of plasma parameter β. Significant anisotropy of the eddy diffusion coefficient was revealed<i>.</i> The dependence of the eddy diffusion coefficient on the interplanetary magnetic field is analyzed, showing that with the southern orientation of the interplanetary magnetic field, the eddy diffusion coefficients are 1.5–2 times greater than with the northern orientation. It is also shown that under disturbed geomagnetic conditions (<i>SML</i> < –200 nT), the eddy diffusion coefficients are several times greater than under quiet geomagnetic conditions (<i>SML</i> > –50 nT).</p>\",\"PeriodicalId\":55597,\"journal\":{\"name\":\"Geomagnetism and Aeronomy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geomagnetism and Aeronomy\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0016793223600996\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomagnetism and Aeronomy","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1134/S0016793223600996","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Spatial Distribution of the Eddy Diffusion Coefficient in the Plasma Sheet of Earth’s Magnetotail and Its Dependence on the Interplanetary Magnetic Field and Geomagnetic Activity Based on MMS Satellite Data
The article presents the results of a statistical analysis of the distribution of the eddy diffusion coefficient depending on the coordinates in the plasma sheet of Earth’s magnetosphere based on data from the Magnetospheric Multiscale Mission satellite system (MMS) for the period from 2017 to 2022. The localization of satellites inside the plasma sheet was recorded from the concentration and temperature of plasma ions according to the data of the same instruments and the value of plasma parameter β. Significant anisotropy of the eddy diffusion coefficient was revealed. The dependence of the eddy diffusion coefficient on the interplanetary magnetic field is analyzed, showing that with the southern orientation of the interplanetary magnetic field, the eddy diffusion coefficients are 1.5–2 times greater than with the northern orientation. It is also shown that under disturbed geomagnetic conditions (SML < –200 nT), the eddy diffusion coefficients are several times greater than under quiet geomagnetic conditions (SML > –50 nT).
期刊介绍:
Geomagnetism and Aeronomy is a bimonthly periodical that covers the fields of interplanetary space; geoeffective solar events; the magnetosphere; the ionosphere; the upper and middle atmosphere; the action of solar variability and activity on atmospheric parameters and climate; the main magnetic field and its secular variations, excursion, and inversion; and other related topics.