为人类和机器的科学理解建立基准

IF 4.2 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Minds and Machines Pub Date : 2024-04-25 DOI:10.1007/s11023-024-09657-1
Kristian Gonzalez Barman, Sascha Caron, Tom Claassen, Henk de Regt
{"title":"为人类和机器的科学理解建立基准","authors":"Kristian Gonzalez Barman, Sascha Caron, Tom Claassen, Henk de Regt","doi":"10.1007/s11023-024-09657-1","DOIUrl":null,"url":null,"abstract":"<p>Scientific understanding is a fundamental goal of science. However, there is currently no good way to measure the scientific understanding of agents, whether these be humans or Artificial Intelligence systems. Without a clear benchmark, it is challenging to evaluate and compare different levels of scientific understanding. In this paper, we propose a framework to create a benchmark for scientific understanding, utilizing tools from philosophy of science. We adopt a behavioral conception of understanding, according to which genuine understanding should be recognized as an ability to perform certain tasks. We extend this notion of scientific understanding by considering a set of questions that gauge different levels of scientific understanding, covering information retrieval, the capability to arrange information to produce an explanation, and the ability to infer how things would be different under different circumstances. We suggest building a Scientific Understanding Benchmark (SUB), formed by a set of these tests, allowing for the evaluation and comparison of scientific understanding. Benchmarking plays a crucial role in establishing trust, ensuring quality control, and providing a basis for performance evaluation. By aligning machine and human scientific understanding we can improve their utility, ultimately advancing scientific understanding and helping to discover new insights within machines.</p>","PeriodicalId":51133,"journal":{"name":"Minds and Machines","volume":"11 1","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards a Benchmark for Scientific Understanding in Humans and Machines\",\"authors\":\"Kristian Gonzalez Barman, Sascha Caron, Tom Claassen, Henk de Regt\",\"doi\":\"10.1007/s11023-024-09657-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Scientific understanding is a fundamental goal of science. However, there is currently no good way to measure the scientific understanding of agents, whether these be humans or Artificial Intelligence systems. Without a clear benchmark, it is challenging to evaluate and compare different levels of scientific understanding. In this paper, we propose a framework to create a benchmark for scientific understanding, utilizing tools from philosophy of science. We adopt a behavioral conception of understanding, according to which genuine understanding should be recognized as an ability to perform certain tasks. We extend this notion of scientific understanding by considering a set of questions that gauge different levels of scientific understanding, covering information retrieval, the capability to arrange information to produce an explanation, and the ability to infer how things would be different under different circumstances. We suggest building a Scientific Understanding Benchmark (SUB), formed by a set of these tests, allowing for the evaluation and comparison of scientific understanding. Benchmarking plays a crucial role in establishing trust, ensuring quality control, and providing a basis for performance evaluation. By aligning machine and human scientific understanding we can improve their utility, ultimately advancing scientific understanding and helping to discover new insights within machines.</p>\",\"PeriodicalId\":51133,\"journal\":{\"name\":\"Minds and Machines\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Minds and Machines\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11023-024-09657-1\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Minds and Machines","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11023-024-09657-1","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

科学理解是科学的基本目标。然而,无论是人类还是人工智能系统,目前都没有很好的方法来衡量代理人的科学理解能力。如果没有一个明确的基准,评估和比较不同水平的科学理解能力就很有挑战性。在本文中,我们提出了一个利用科学哲学工具创建科学理解基准的框架。我们采用的是行为理解概念,根据这一概念,真正的理解应被视为执行某些任务的能力。我们扩展了科学理解的这一概念,考虑了一系列衡量不同科学理解水平的问题,包括信息检索、安排信息以做出解释的能力,以及推断事物在不同情况下会有何不同的能力。我们建议建立一个科学理解基准(SUB),由这些测试组成,以便对科学理解进行评估和比较。基准在建立信任、确保质量控制和提供性能评估基础方面发挥着至关重要的作用。通过协调机器和人类的科学理解,我们可以提高它们的效用,最终促进科学理解并帮助发现机器内部的新见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Towards a Benchmark for Scientific Understanding in Humans and Machines

Scientific understanding is a fundamental goal of science. However, there is currently no good way to measure the scientific understanding of agents, whether these be humans or Artificial Intelligence systems. Without a clear benchmark, it is challenging to evaluate and compare different levels of scientific understanding. In this paper, we propose a framework to create a benchmark for scientific understanding, utilizing tools from philosophy of science. We adopt a behavioral conception of understanding, according to which genuine understanding should be recognized as an ability to perform certain tasks. We extend this notion of scientific understanding by considering a set of questions that gauge different levels of scientific understanding, covering information retrieval, the capability to arrange information to produce an explanation, and the ability to infer how things would be different under different circumstances. We suggest building a Scientific Understanding Benchmark (SUB), formed by a set of these tests, allowing for the evaluation and comparison of scientific understanding. Benchmarking plays a crucial role in establishing trust, ensuring quality control, and providing a basis for performance evaluation. By aligning machine and human scientific understanding we can improve their utility, ultimately advancing scientific understanding and helping to discover new insights within machines.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Minds and Machines
Minds and Machines 工程技术-计算机:人工智能
CiteScore
12.60
自引率
2.70%
发文量
30
审稿时长
>12 weeks
期刊介绍: Minds and Machines, affiliated with the Society for Machines and Mentality, serves as a platform for fostering critical dialogue between the AI and philosophical communities. With a focus on problems of shared interest, the journal actively encourages discussions on the philosophical aspects of computer science. Offering a global forum, Minds and Machines provides a space to debate and explore important and contentious issues within its editorial focus. The journal presents special editions dedicated to specific topics, invites critical responses to previously published works, and features review essays addressing current problem scenarios. By facilitating a diverse range of perspectives, Minds and Machines encourages a reevaluation of the status quo and the development of new insights. Through this collaborative approach, the journal aims to bridge the gap between AI and philosophy, fostering a tradition of critique and ensuring these fields remain connected and relevant.
期刊最新文献
Mapping the Ethics of Generative AI: A Comprehensive Scoping Review A Justifiable Investment in AI for Healthcare: Aligning Ambition with Reality fl-IRT-ing with Psychometrics to Improve NLP Bias Measurement Artificial Intelligence for the Internal Democracy of Political Parties A Causal Analysis of Harm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1